アインシュタインの旅日記とアインシュタインからの墓碑銘の話―アインシュタインが訪れた九州大学と福岡(その5)

以前「アインシュタインからの墓碑銘」とアインシュタインの日本への旅日記についての記事を書きました。先日、九大医学部図書館からその本(「アインシュタインからの墓碑銘」サイン入りの著者からの寄贈本です)を借りてきて読んでみました。その本のはじめにあったアインシュタインの言葉を再録しておきます。

美しい微笑みをたたえ、お辞儀をし、床に座る人々へ。
願わくは西欧に先んじた自らの偉大な徳を、汚さずに保ち続けることを忘れないでほしい。すなわちそれは、生活を芸術的に築きあげることであり、個人の欲望を抑えた簡明、質素な態度、そして心の清明な静けさである。アルベルト・アインシュタイン(桑折千恵子訳)」

この本には、アインシュタインの博多訪問や三宅 速 教授宅への訪問だけでなく三宅ご夫妻の空襲での殺害、そして九大医学部での米軍爆撃機のパイロットに対する生体解剖事件についても詳しく書かれています。またその事件後の九大第一外科のたてなおしに三宅ご夫妻の息子さんの三宅博さんが尽力されたことも書かれています。
アインシュタインの旅日記の日本訪問の部分の全訳「アインシュタイン日本で相対論を語る」はすでに出版されていましたが、その他のアジア地域とパレスチナ、スペインの旅日記も含む本、アインシュタインの旅行日記も最近、草思社から翻訳版がでたので、上の本と併せてご覧になると考えさせられるところが多いと思います。
写真は一週間ほど前に近所でみつけたねむの木の花です。今年もきれいに咲いていました。

jamoviで学ぶ統計学―統計ソフトRをもとにした統計学のスプレッドシート型グラフィカルインターフェイスの紹介

このブログでは統計解析のためのおすすめソフトとしてRを紹介してきました。

ネットサーフィンしていると、jamovi(ジャモウヴィと読むようです)というソフトがあるのに気づきました。これは無料で使えるRをもとにしたソフトで、スプレッドシートでSPSSなどの高価な有料ソフトと似たわかりやすい使い方ができ、かつ無料のソフトだそうです。jamoviの “syntax mode”をつかえば、解析にjamoviが用いているRのコードが表示されそれをRにコピーして使うことができます。逆に、Rj Editorというjamoviのモジュールをjamoviに入れて使うと、Rのコードをjamovi内で利用することもできます。windows, mac, linux, chrome OSで利用でき、使い方のビデオや、jamoviを使った統計学の教科書(Version 0.70, 2019)も無料で公開されています。これはLearning Statistics with R(Navarro DJ著)に基づいた教科書で、なんと日本語版(Version 0.65の翻訳)も芝田征司先生が作成して公開されています。心理統計と初歩の入門者向けの本とのことですが、Rや RStudioより初心者向きの解析ツールを探しているかたなど、興味のある方は使ってみると良いと思います。

写真は家で実っているリンゴです。今年は昨年より沢山花が咲いたため、10個以上の実がなっています。

糖鎖生物学入門―5 糖鎖を描いてみよう―糖鎖シアリル ルイスxを描いて単糖どうしの結合についての理解を深めよう。

今回は、次の図に示す有名な糖鎖 「シアリルルイスX」(sialyl Lewis x: Lexとも書かれます)を描いてみましょう。このシアリルルイスxという糖鎖は、リンパ球の炎症反応などに関わっていたり、癌組織で増えていたり癌の転移に関わっていたりと大変重要な糖鎖です。

まずシアリルルイスxという糖鎖の構造をネットで調べます。(ルイスxやルイス血液型については註1をご覧ください。)

sialyl Lewis(x)というのをPubChemでしらべてみると以下のように化合物名がでています。
https://pubchem.ncbi.nlm.nih.gov/compound/Sialyl-Lewis_X
ページの中を読んでいくと、
sialyl Lewis xとあって下に様々な表記で同じ化合物を表したものがならんでいます。
Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcbβ
α-Neu5Ac-(2->3)-β-D-Gal-(1->4)-[α-L-Fuc-(1->3)]-β-D-GlcNAc
alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc (Neup、Galp、Fucpについては注2参照。pはピラノースの意味です。)
alpha-Neu5Ac-(2-3)-beta-D-Gal-(1-4)-(alpha-L-Fuc-(1-3))-beta-D-GlcNAc

この表示の意味がわかるようになるのが今回の目標です。

今回は上のシアリルルイスxの構造表記をもとに、前に紹介したCarbodrawというソフトをつかって糖鎖を描いてみましょう。このソフトのヘルプに英語ですがシアリルルイスxの書き方がのっています。(最後のD-GlcNAcがαになっている図を描いた例です。)
大学院の講義でこのソフトで糖鎖を描く例としてとりあげていたので、この入門でもやってみようと思います。生物が使っている単糖はたいていはD型ですが、フコースとイズロン酸はL型であることに注意して描いてみましょう。まず以下の表記を使ってみましょう。
alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc

Carbodrawでこの構造を書く方法は以下のとおりです。

まずFucoseとGlcNAcをα(1,3)結合で結びましょう。
-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAcの部分を描く作業です。デフォルトで表示されるFucose(フコース)はD型になっています。これをL型にかえなくてはなりません。αD Fucoseの上で右クリックして、Propertiesを選択すると下図のような画面がでます。ConfigurationがDになっているのをLに変えて、OKを押すとできあがり。これでL-Fucoseになりました。

(今回はやりませんが、Anomerityの項目でAlphaとあるところをBetaにするとβ-Fucoseができます。SubstitutionsのUp, Downのメニューを選ぶと、硫酸化とかの修飾も入れることができます。)
次に、-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAcの表記の後半、
beta-D-GlcpNAcを、Fucoseの時と同様にalpha-D-GlcpNAcから作ります。メニューからGlcNAcを選ぶと、デフォルトではα-D-GlcNAcが表示されるので、名前の文字のあたりを右クリックして、Propertiesを選び、Anomerityの部分にAlphaとあるところをプルダウンからBetaにかえてOKを押すとα-D-GlcNAcがβ-D-GlcNAcにかわります。

最後に、作ったα-Lフコースと、α-D-GlcNAcをα(1,3)グリコシド結合で結びます。それにはメニューの矢印の隣、魔法の杖のようなマークをクリックします。カーソルが魔法の杖に変わったら、単糖の炭素の番号表示をオンにしておき(炭素の番号表示のオン、オフは➂と書いてあるボタンをクリックして行います)、Fucoseの1番の炭素をこの杖のカーソルでクリックし、ドラッグすると線がマウスカーソルを動かすにつれて伸びていきますので(下図)、GlcNAcの3番の炭素までドラッグしていきます。

フコースの1番炭素からGlcNAc(グルックナック)の3番炭素にちゃんと結合ができると、線が太くなるのでそこでドラッグを止めると結合が描画されます。

 

まず一つ結合が書けました。こうして実際にソフトを使って書いてみると[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc化合物の表示の(1,3)などという表現の意味が良くわかると思います。

次はalpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc

の前半、alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-を描きましょう。

CarbodrawのメニューからNANA(Neu5Ac:N-Acetylneuraminic acid=N-アセチルノイラミン酸)を選んでそれをβ-D-Galに結合させます。
まずNANAの結合するGalactoseを描きましょう。Galactoseを選んで図に追加すると、α-D-Galactoseが描かれます。それをβ-D-Galactoseに変えて、(右クリック、PropertiesででるメニューのAnomerityのプルダウンからBetaを選んでOKを押すだけです)、できたものの一番目の炭素を、さきほど作ったβ-D-GlcNAcの四番炭素へ結合させます。

次に、シアル酸のNANAをメニューから選び、図に追加します。これをβ-D-Galacotoseの3番の炭素に結合させます。NANAで炭素の番号を図のように表示するとわかりますが、シアル酸以外の他の単糖(ピラノース型のもの)の酸素(図では酸素は赤丸で表示されています)のとなりの炭素は1番なのに、シアル酸ではピラノースの酸素の隣の炭素の番号は2番になっています。それで普通の単糖の場合1-3結合に相当する結合がシアル酸では2-3結合になるわけです。この炭素の番号づけのずれのために、シアル酸転移酵素(シアル酸をくっつける酵素)はα2-3、α2-6、α2-8というように2番炭素がグリコシド結合に関与する結合表示となります。NANAの2位の炭素からalpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-の表記にしたがって、α2-3結合をGalactoseの3位の炭素にむけて作りましょう。これでシアリルルイスx糖鎖が完成です。

 

 

自分でいろんな結合をつくってみると、糖鎖の論文にでているα1,3とかいう文言が怖くなくなるでしょう。詳しいやり方は、CARBODRAW/HELP/CARBODRAW.HTMLにありますので、CarbodrawのヘルプメニューからHelp Topicsをクリックして、参照してください。

記号表示では以下のようになります。

シアル酸の場合、何も書いていときは上に書いたとおり、αのあとには2が略してあると思ってください。それ以外のαやβはα1、β1が略してあるということです。

註1:ルイスエックスという名前にある、ルイス(Lewis)というのは、ルイス血液型という名前に由来します。ルイス血液型をになうのはルイスaとルイスbという糖鎖です。ルイスというのは、この血液型を解明するのに貢献した抗ルイスa抗体を提供したドナーのルイスさんの名前にに由来するのだそうです。LeaやLebの糖鎖は、糖脂質に付加されており、血清に存在する糖脂質が赤血球表面に吸着して血液型物質になっている例です。ルイスa, ルイスという糖鎖の異性体がそれぞれルイスx、ルイスyという糖鎖です。ルイスxやそれにシアル酸が付加されたシアリルルイスxは赤血球表面には存在していないので血液型物質ではないのですが、リンパ球の表面に存在して炎症反応などに関わっていたり、癌組織で増えていたり癌の転移に関わっていたりと大変重要な糖鎖です。
註2:この表現でのNeupとかGalp、Fucpという表記のpはピラノースの意味です。ピラノースは、O(酸素)を含む6員環の化合物ピランpyranに由来する糖の命名法で、Oを含む6員環構造をとっている糖を指します。furanoseはOを含む5員環の構造をとっている糖を指し、これもOを含む5員環の化合物furanに由来する命名です。

お知らせ―サイトを常時SSL化しました!(5/27日追記有)常時SSL化の手順

昨日、WordPressで作っているこのサイトをSSL化しました(SSLはSecure Sockets Layerの略だそうです)。具体的にはサイトにアクセスしてもらったとき、ブラウザのサイトのurl表示のところが鍵マークになり、ブラウザとサイトのサーバー間の接続が暗号化されるようになるということです。最近のブラウザではhttpsでアクセスしないと警告表示がでたりしますので多くのサイトが常時SSL化をしています。昨日やってみましたが以外に簡単にできました。今後はアクセスするときのurlがhttp://glycostationx.orgからhttps://glycostationx.orgにかわるというわけです。

以下は覚書をかねたSSL化したときの手順です。各自ご自分のサイトに合わせて読み替えてみてください。(写真はひと月ほど前に咲いていたリンゴの花です。今年は去年より沢山花が開きました。意外かもしれませんが、九州ではリンゴも栽培されています。)

1.最初にSSL化の失敗に備えて、サイトhttp://glycostationx.orgを丸ごとバックアップしました。サイト自体をAll-in-One WP Migration というWordPressのプラグインでバックアップして保存しておきます。やり方は簡単で、このプラグインをインストールしたあと起動し、エクスポートを選びます。画面がエクスポート用画面に変わるので、エクスポート先をクリックして出てきたメニューから、ファイルを選びます(クラウドを選ぶこともできます)。するとサイト名であるglycostationx.orgをダウンロード、サイズ:何メガバイトなどと表示されるので、拡大収縮表示されている部分をクリックして、保存先をパソコンの適当な場所に指定してダウンロードしたらOKです。この作業は以下を参考にして実施しました。
https://smakoma.com/wordpress-backup-restore.html
(もちろんこのようなプラグインを使わず、ftpなどでサイトのファイルを丸ごとダウンロードすることもできます。こちらのほうがギガバイト以上あるようなサイトの場合は早くて確実だと思います。)

2. サイトのバックアップができたら、次に私の使っているレンタルサーバーで無料のSSL証明書を発行してもらってSSL化を申請して、http://glycostationx.orgをhttps;//glycostationx.orgに変えました。これはレンタルサーバーごとに手順があるのでお使いのサーバーのマニュアルなどで調べるか、Google検索などでレンタルサーバー名とSSL化などのキーワードで探してみてください。エックスサーバーでのやり方を解説している以下のページはとても参考になりました。https://nelog.jp/wordpress-ssl
私の使っているレンタルサーバーでは、SSL化を申請後、1時間もかからずにサイトにhttps://glycostationx.orgでアクセスできるようになりました。

3.次に、WordPressのダッシュボードで、設定―一般とすすみ、WordPressアドレス(URL)とサイトアドレス(URL)の項目(どちらもhttp://glycostationx.orgになっている)をhttps://glycostationx.orgへと変更して変更を保存します。

4.次に、http://glycostationx.orgをブックマークしてある方などをhttps://glycostationx.orgへと自動で誘導するように設定する作業を行います(これはサーバー側での301HTTPリダイレクトというそうです。)。これには.htaccessのファイル(ドットエッチティーアクセスファイル)を編集します。とても簡単な作業で、
サイトの”.htaccess”ファイルの先頭に以下を追加しておくだけでOKです。
RewriteEngine On
RewriteCond %{HTTPS} !on
RewriteRule ^(.*)$ https://%{HTTP_HOST}%{REQUEST_URI} [R=301,L]

.htaccessファイルの編集には、自分のドメインのフォルダの下にあるpublic_htmlの中にある.htaccessファイルを編集します。レンタルサーバーが.htaccessファイルを編集する手段を提供している場合はレンタルサーバーのツールで編集するのもよいですが、安全のため、いちどftpなどで.htaccessファイルをダウンロードして、保存しておき、テキストファイルエディタで開いてみて中身をよくみてから編集するのをすすめます。

今回、サイトでの.htaccessファイルのありかを確認してftpでダウンロードし、編集してアップロードするには、WinSCPというファイル転送ソフトを使いました。
https://winscp.net/eng/docs/lang:jp
このソフトはデフォルトではドットが先頭についている隠しファイルは表示しないので、ソフトを起動して環境設定―パネルを選び、「一般」にある「隠しファイルを表示する」にチェックを入れるのを忘れないようにしてください。こうすると.htaccessファイルが表示され、ダウンロード、アップロードができるようになります。編集が終わったら、編集済みファイルをWinSCPでアップロードしてもとあった.htaccessファイルに上書きしたら完了です。http://のサイトurlでアクセスしてhttps://のサイトへ飛ぶことを確認してください。
WinSCPは九大での旧ホームページ作りにも使っていたとても便利なFTP/SFTP/SCPクライアントソフトです。他にもiPadへのWindowsからの電子ブック転送とかにも使って重宝しています。

5.次に、自分のサイト内での画像やpdfへのリンクなどにhttp://glycostationx.orgではじまるurlを使っているので、これらをすべてhttps://に変える必要があります。1.でバックアップができていることを確認した上で、サイト内のhttp://glycostationx.orgの記述(画像やpdf, サイト内の別のページへのリンクなど)をhttps://glycostationx.orgへ一括で変更します。一括変更には、WordPressのプラグインSearch Regexを使います。このプラグインでブログ内の記述でhttp://glycostationx.orgで始まるものを検索、これをhttps://glycostationx.orgに一括で変更できるので大変便利です。検索にはプラグインのタイトルどおり正規表現も使えますが、単なる文字列でも検索・置換ができます。

注意:このプラグインは更新が3年ほどなされていないため、最新のWordPress(バージョン5.2)で使うと、エラーのメールがとどきます。ブログ名のあとに「サイトで技術的な問題が発生しています」というタイトルのメールがとどいて驚いたのですが、内容は、
”エラータイプ E_ERROR が ブログサイトのwp-content/plugins/search-regex/view/results.php ファイルの 26 行目で発生しました”などというものでした。
Google検索で以下のキーワードで調べてみると、
「”search regex” wordpress 技術的な問題が発生しました」
次のような解決策のページがありました。
https://smakoma.com/search-regex-error.html
このページのとおり、WordPressのダッシュボードからプラグインを選び、プラグインエディターを開いて、該当のエラー行を削除したら完了です。この作業後はもうエラーのメールはこなくなりました。

エラーがでなくなったところで、プラグインをインストールしてあれば、ツールメニューにSearch Regexがありますので、クリックして起動します。SourceにはPost Contentをまず選びます。Limit toとOrder Byはデフォルトのままでよいです。http://glycostationx.orgを検索して、https://glycostationx.orgへと置換したいので、Search patternと書いてある検索窓にhttp://glycostationx.org、Replace patternと書いてある置換窓にhttps://glycostationx.orgといれて、Replaceボタンを押します。するとサイト内のhtml記述中のhttp://glycostationx.orgで始まる部分が全部表示され、https://glycostationx.orgで置換された表現も併せて表示されます。この段階では置換は行われていません。ちゃんと置換すべき部分が表示されているかどうか、全部確認した上でOKならReplace & Saveボタンを押せば全部置換してくれます。このボタンの操作は戻せないので確認は慎重にしてください。終わったら他にhttp://glycostationx.orgの記述がないかを、SourceをPost excerptにして再確認します。あれば確認して置換します。他のSourceについても順次作業を繰り返し、終わったら置換終了です。

6.最終確認です。ChromeとかFirefoxとかでサイトにアクセスしてちゃんと鍵マークが表示されるか試してください。トップページや固定ページごとに試してみて全部鍵マークが表示されればOKです。私の場合は、論文と研究概要の固定ページでエラーになり、鍵マークが表示されませんでした。その部分をクリックすると画像が疑わしいというようなメッセージがでました。そこで、ブラウザのChromeで問題のあるページを表示して、右クリックしメニューの中の検証をクリックします。表示されるページでConsoleをクリックすると、問題のある画像がどれか教えてくれるので修正することになります。私の場合は、画像を九大の旧サイトを参照することで表示しており、このサイトへのリンクがhttpsではなかったからエラーになったのがわかりました。訂正すると無事、全部鍵マークになりました。

7. あとはGoogle Search ConsoleやGoogle Analyticsへの登録が必要になったりするサイトもあるかもしれませんので、その場合は、各自検索して調べてみてください。

私はGoogle Search Consoleを使っていますが、その場合はプロパティの追加で、URLプレフィックスではなくて、ドメインのほうを選びます。ドメイン名を入れて続行ボタンを押すと、「DNSレコードでのドメイン所有権の確認」という画面に変わり、テキストレコードが発行されます。このテキスト(特定のドメインの同定用の文字列です)をコピーして、サイトのサーバーのDNS編集画面から、このテキストを内容とするTXT タイプの新しいDNSレコードを作成します。DNSレコードの追加が終わったら、あとはGoogle Search Consoleの「DNSレコードでのドメイン所有権の確認」画面で確認ボタンをおして所有権を確認します。確認がまだですというような画面がでたら10分ほどおいて再度確認すると確認が終わると思います。この方法を使えば、http://glycostationx.orgの時のデータもそのまま移行されるので便利です。http://glycostationx.org, https://glycostationx.org, http://www.glycostationx.org, https://www.glycostationx.orgそれぞれについてプロパティをGoogle Search Consoleで作成して所有権を確認‥‥という面倒な手順は不要です。

この方法は、「サーバー名 dns レコードでのドメイン所有権の確認」という検索キーワードで見つけました。

糖鎖生物学入門―4 アルマ望遠鏡がとらえた、宇宙に存在する糖

前回は単糖の構造を簡単に紹介しました。炭水化物は一般にCm(H2O)nと表記され、炭素に水がついたような分子という意味で、carbo hydrate (炭・水化物)というのでした。ではm=2でn=2の化合物、C2(H2O)2というのはどんな分子でしょうか。
グリコールアルデヒドという名がついているこの分子は、PubChemでは下図のような構造であると表示されています。 立体構造はこんな感じです。

図の左の構造式をみると、右端にアルデヒド基-CH=Oがあります(註2)。HOCH2-CH=Oいう構造のこの分子は、diose とよばれ (di-は2という意味の接頭語、-oseは糖を示す接尾語ですので、2-carbon sugarとも言われます。二炭糖といいます。註1参照)、体内で重要な代謝産物として働いており、たとえばアセチルCoAに容易に変化することも知られています。
このdioseは実は宇宙に存在しています。その存在を明らかにしたのは、先日ブラックホールの形をとらえた電波望遠鏡システムALMAです。
The Atacama Large Millimeter/submillimeter Array (ALMA) は、南米チリのAtacama砂漠に展開している電波望遠鏡群=アタカマ大型ミリ波サブミリ波干渉計です。上にリンクを張った日本語での紹介ページのトップの「ALMA望遠鏡にまつわる10のこと」の第4番目に「地球外生命の可能性に迫る」という項目があり、そこにグリコールアルデヒドの分子の絵がのっています。説明文にはアミノ酸のことばかり書かれていますが、グリコールアルデヒドは様々な炭水化物のもとにもなる分子です。
発見された場所はIRAS 16293-2422という地球から400光年はなれた連星系のガスの中で、太陽系タイプの星が誕生している現場と考えられているところです。その暖かいガス(200-300K程度の温度だそうです)の中に初めてグリコールアルデヒドが存在することがALMA電波望遠鏡で検出されたのです(論文はここからダウンロードできました)。以下の動画も参考にしてください。

グリコールアルデヒドは上に述べたように最も簡単な糖 diose (二炭糖)であり、ホルムアルデヒドからはじまるホルモース反応(formose reaction)で、触媒の存在下で様々な単糖やリボースなども合成できる素材となる分子でもあります。ホルムアルデヒド(化学式はHCHOでありこれはC(H2O)とかけます)は宇宙空間に存在することがすでに分かっており、グリコールアルデヒドとホルムアルデヒドがホルモース反応をすると三炭糖(グリセルアルデヒドなど)ができあがり、それをもとに様々な糖が合成できるのです。つまり宇宙に、それも太陽系の形成現場にグリコールアルデヒドが検出できたということは、生物によらない触媒で、こうした糖が形成される可能性を補強する発見であり、生命の礎になる炭水化物分子の発見は、宇宙における生命の起源の研究に大きく貢献するというわけです。

最初の有機化合物の一つとして、簡単に糖ができる、というのはとても興味深い可能性です。生命は糖からできたのかもしれない、つまり、RNAワールド云々をするまえに宇宙に豊富な糖の存在が前提としてあって、糖を中心とするタイプの生命がまず最初にできた(RNAの中にも糖がはいっています)可能性すらでてくるわけです。今まで生命の起源の説明に糖を取り込む試みは少なかったのですが、糖鎖生物学者の多くは、RNAワールドより前の糖の形成にこそ、生命の起源を解くカギがあると確信していると思います。

ALMA望遠鏡の日本語サイトには動画ギャラリーもあり、研究者向けサイトととともに大変わかりやすく望遠鏡の全貌を紹介してくれています。本屋に山積みされていた本『スーパー望遠鏡「アルマ」の創造者たち』もおすすめです。ALMA望遠鏡の建設に日本の科学者たちが決定的な貢献をしているのがよくわかります。

註1:炭素が2つ入ってる糖が二炭糖、3つが三炭糖、4つが四炭糖、5つなら五炭糖、6つなら六炭糖です。英語では、di-が2の接頭辞、tri-が3、tetra-が4、penta-が5、hexa-が6の接頭辞ですから、それぞれdiose, triose, tetrose, pentose, hexoseというう名前となります。pentoseはペントースリン酸サイクルというのを生化学で習った人もいるかもしれません。ヘキソースもよく聞く言葉ではないでしょうか。

註2:単糖でアルデヒド基を含むものをaldose(アルドース)、ケト基をふくむものをketose(ケトース)と呼ぶことも覚えておくと良いと思います。glycolaldehydeはaldoseになります。註1とあわせると、aldotetroseとか、ketopentoseというのがどんな物質かがわかると思います。このようにketoseやpentoseに、炭素数を組み合わせた表現もよくみうけます。

Brenner先生がCurrent Biologyに書かれたコラムの記事や関連本がダウンロードできます。

 

先日亡くなったBrenner先生はCurrent Biology という雑誌に 1994年1月から2000年12月までコラムを執筆されていました。そのコラム( Loose Endsというコラム名が、途中から False Startsにかわりました。これはコラムの掲載場所が雑誌の巻末から巻頭に変わったのに対応して おちゃめにタイトルを変えたようです)がオンラインで読めるようになりましたのでお知らせします。またpdfをダウンロードすることもできます。ダウンロードするには、ページの中央下にあるスピーカーボタンの左隣にある、ダウンロードボタンをおしてください。「パブリケーション全体―8.5MB 出版物をpdfファイルとしてダウンロードします」という表示がでますのでクリックするとpdfが保存されます。

それからEMBO in Perspectiveという本も紹介しておきます。無料ダウンロードはここからできます。

EMBO (ヨーロッパ分子生物学機構)の50周年記念で作られた本だそうで、サイエンスライターでドロシー・ホジキンの伝記を書いたので有名な Georgina Ferryさんが書いた本です。Paul Nurseが序文を書いています。

Based on personal interviews with Sydney Brenner, L. Luca Cavalli-Sforza, Georges Cohen, James Watson and the directors of EMBO, this book tells the story of the journey from the study of molecules and microbes in the nuclear age to the growth and expansion of EMBO and the life sciences. It also provides new perspectives on some of the creation myths of the organization. (上記のEMBOのホームページからの引用)

写真は自宅に実ったサクランボです。毎年、カラスなどに食べられないようネットを張っていたのですが、今年は面倒なので白いビニールの荷づくり紐を、トリの羽が引っ掛かるように張りました(写真右)。これは案外効果がありました。一切鳥がよりつきませんでした。

最近、カラスの代わりにカラスの仲間のカチガラスがご近所のサクランボを食い尽くしていました。カチガラスはかささぎの別称で、佐賀の県鳥ですが福岡にも出没しています。(余談ですが、植松三十里さんの小説「かちがらす-幕末を読みきった男」( 小学館)は、幕末の佐賀藩主の活躍を描いたものでとても面白かったです。) カチガラスは電柱の上に巣を作って停電の原因になったりしている害鳥でもあります。

白いビニール紐を張っておくと、カチガラスはおろか、一切の鳥が寄り付かなくなり、写真のサクランボは今は熟れすぎたまま木に全部残っています。収穫は連休中に終えたので、あとは紐を切って鳥に食べてもらわなくてはと思っています。とにかく、サクランボなどを鳥から守るには、ビニールひもを張り渡すというのがとても効果があることがわかったのは発見でした。

糖鎖生物学入門―3

平成も最後の日になりました。皆さん、どのようにお過ごしでしょうか。散歩にでかけると、藤の花やキンラン(金蘭)が咲いており初夏に感じられます。さて、糖鎖生物学入門記事の3回目です。(追記:一回目からまとめて糖鎖生物学入門を読みたい方は、固定ページのタブをクリックしてご覧ください。)

前回は糖鎖を構成する単位である単糖monosaccharideについて、その表記方法を含めて紹介しました。今回は単糖の構造について学びましょう。

炭水化物とはどんなものだろうか?:
前に紹介した単糖の一つ、グルコースをCarbodraw(註1)というソフトで書いたのがこの図です。赤が酸素原子、水色が水素原子です。

ではこの、このグルコースの水素原子と、水酸基OHを表示してみましょう。

すると、上の左の図のようにグルコース分子では、H(水素)とOH(水酸基)が上に向いたり、下に向いたりと、いろいろならんでいるのがよくわかります。OHやHは炭素からでている(炭素と結合している)ので、炭素の番号も合わせて表示すると上の右の図のようになります。水素のHと水酸基のOHがそれぞれ番号がついたグルコースの炭素にくっついているのがよくわかります。水はH2Oですが、単糖の各炭素原子に水素HとOH基が結合しており、まるで、炭素原子に水がくくりつけられているようにも見えますね。これが炭水化物という名前の由来です。

グルコースなどの単糖も炭水化物に属する化合物です。炭水化物は、分子式がCn(H2O)mという化学式で書けるものの総称です(最新の定義はもっと詳しいのがありますが、入門者にはこの古典的定義で十分です)。英語ではcarbohydrateといいます。hydrateという接尾語の意味は辞書のOxford English DictionaryではA compound of water with another compound or an elementなどと書いてあって、元素や化合物に水が結合した化合物が炭化水素であるということになります。グルコースの場合は、C6(H2O)6ということになり、図をみてみると、確かに一個の炭素あたり、水が一個結合しており、5の番号のついている炭素(5位の炭素といいます)のところだけが、ちょっと他と違っているのがわかりますね。これもこれでなかなか意味がある構造となっていそうですね。1位の炭素と5位の炭素の間は酸素がつないでいますので、5位と6位の炭素のところだけちょっと違うのに気づくと思います。

単糖は図にみられるように環状構造しているものが安定形です。輪を6つの原子でつくっているもの(6員環)と5つの原子で作っているもの(5員環)があります。グルコースは6員環です。酸素の隣の炭素から順に炭素原子に番号が振られています。この番号は、単糖が結合して糖鎖になるとき、何番目の炭素で結合していくかを記述するのに重要ですので、番号がついているんだということだけ覚えておいてください。

アノマー:
あと、真ん中あたりにβDというのがありますね。これは単糖の立体構造の違いを示すもので、αDのグルコースというのもあります。二つを比べてみると次の図のようになります。

 

違いはどこかわかりますか。1位の炭素でOHとHの向きが逆向きになっていますね。これだけの違いです。水溶液中ではこの二種類のグルコースが平衡状態で一定の比率で存在することがわかっています(純粋なαD グルコースを水にいれると、一部はβD グルコースに変化する。逆も同じです)。αとβの違いはこんなものです。(1位の炭素C-1がアノマー炭素とよばれ、αとβのタイプの分子はアノマーの関係にあるといいます。)

あとはDですが、Lというのが対になっています。L-glucoseという分子もあるわけです。ただ自然界にみられる単糖はほとんどがD型で、L型はフコースとイズロン酸だけなのでフコースとイズロン酸を描くときだけ注意してあとはD型を書けばよいことになります。

エピマーについて:
グルコースの化学式、C6(H2O)6という化学式をもつ単糖は他にもあります。ガラクトースとかマンノースがそれです。構造がどう違うかは以下の図で確認してみてください。

GlucoseとGalactoseの違いは、C-4位の炭素-4のOHとHの付き方ですね。
GlucoseとMannoseの違いは、C-2位の炭素のOHとHの付き方であることがわかります。
たったこれだけの違いですが、生物はこれらの単糖を使い分けているわけで、立体構造の重要性がわかりますね。このように糖の一個の炭素原子の立体配置の異性化したものをエピマーといいます。マンノースとガラクトースは、それぞれグルコースのエピマーです。

註1:Carbodrawについての警告です。糖鎖を描いているソフトはフリーソフトのCarbodrawですが、このソフトをGoogle検索などで探してダウンロードするのは危険ですのでやめてください。このソフトの開発は止まっており、作っていた会社もなくなっています。Google検索で探すと、やばそうなページがいっぱいヒットします。crackだのなんだのというタイトルのページ(このソフトはフリーソフトで登録も不要なもので、crackなど必要なわけがないのですが)があったりして、うっかりクリックすると妙なソフトをダウンロードさせられたり、セキュリティ上の被害を被る可能性もありますので注意してください。(5月1日追記:こちらのページからダウンロードするのは安全そうです。)
https://www.cmbn.no/tonjum/biotools-free-software.html 

写真はキンラン(金蘭)と藤です。

Sydney Brenner先生がなくなられました―検索エンジンSemantic Scholarを使ってみよう

分子生物学の開拓者であり、モデル生物C. elegans(線虫シー エレガンス)を世に送Sydeny Brenner先生が先日(4月5日)なくなりました。RIP to a scientific hero.などとtwitterでも惜しむ声が多かったようです。雑誌Natureの追悼記事はこちらにあります。写真はOIST(沖縄科学技術大学院大学)提供のものです。(RIP というのはラテン語のrequiescat in paceの頭文字をとったもので、may he rest in peace, may she rest in peace, may they rest in peaceの意味だそうです。安らかにお眠りくださいという意味ですね。)
Brenner先生は分子生物学の開拓者の一人で、電子顕微鏡のネガティブ染色法の開発者でもあります。突然変異のメカニズムの研究で大きな業績をあげ、それを使ってアミノ酸をコードしている遺伝暗号が3つの塩基の並びからなる(あるいはありそうもないが3の倍数)ことを証明したり、トランスファーRNAの存在を予言、あるいはmRNAの存在をJacobとの共著論文で証明したりしています。これだけでもノーベル賞級の発見ですね。今まで分子生物学で大いに役立ったファージのように使いやすい多細胞生物で、発生や神経の問題を調べるために理想的なモデル生物を探した結果、線虫C. elegansを導入し、プログラムされた細胞死の研究でノーベル賞を授賞されています。私も英国ケンブリッジにいたときに先生のセミナーにでたことがありますが、理論面からの実験への鋭い切り口が印象的なセミナーでした。新しい技術は新しい発見を生むという先生の言葉は特に記憶に残っています。

Brenner先生の自伝的回想のインタビュー(発生生物学者で位置情報の三色旗モデルで有名なLewis Wolpertに語っています)をまとめた、「エレガンスに魅せられて」という本も前に買ってもっていますが、今は中古本でしか入手できないようですね。

YouTubeにはBrenner先生の動画が色々ありますので、適当なのを選んでご覧になるといいと思います。上に載せている動画は2017年に四日間にわたってシンガポールで行われたBrenner先生の講義の動画です。四日分がアップロードされていますのでご覧ください。この講義はIn the Spirit of Science: Lectures by Sydney Brenner on DNA, Worms and Brains という題で、本になっているようです。私はまだ入手していませんが英語が聞き取れない人は買ってみるのも良いと思います。Kindle版は安く入手できるようです。
この動画、まだ最初のあたりしか見ていませんが、 Turingとvon Neumannの話からはじまっています。Brenner先生はSchrodingerのWhat is Life?には全く興味をもてなかったと、上の自叙伝の本で述べていますが、かわりにNeumannの自己増殖オートマトンの理論に深い興味をもたれたようです。このYouTubeの講演でいっている自己増殖オートマトンの本というのは、たぶんノイマンが1948年にHixsonシンポジュウムというシンポジュウムで、THE GENERAL AND LOGICAL THEORY OF AUTOMATAという題で講演した論文で、後に出版されたこの本Theory of Self-Reproducing Automataではないと思います。Hixson symposiumのNeumannの論文は、中央公論社からでた世界の名著66 現代の科学IIに品川嘉也先生の訳で「人工頭脳と自己増殖」という題で邦訳されています。図書館や古本で探して見られると読めると思います。詳しい注釈がついているので翻訳版はおすすめです。英語の論文はここにあります。これはSemantic Scholarという検索エンジンを使って探しました。これは、工学系、生命科学系にかかわらずとても有用な検索エンジンのように思われます。この検索エンジンはマイクロソフトの創設者の一人Paul Allenが設立したAllen Institute for Artificial Intelligenceが作成しているAIベースの検索エンジンです。コンピュータ科学や生命医科学の論文が収録されており、たとえばC. elegans, chondroitin synthaseで検索すると、私達の論文がトップにでてきます。

遺伝暗号の解読をBrenner先生やCrickたちが進めていたとき、モスクワの学会で全く無名の研究者が遺伝暗号の解読の成功を発表しました。その時、彼の発表会場はほとんど空で人がいなかったそうです。遺伝暗号の最初の解読結果が発表されたというのを友人のMatt Meselsonから聞いたCrickは、その無名のアメリカの科学者Marshall Nirenbergにもう一回、1000人以上が集まるシンポジュウムで同じ話をしてくれと依頼したそうです。シンポジュウムのプログラムにNierenbergの名前を手書きで書き加えたものが残っています。その場でNirenbergは二番目の遺伝暗号の解読の成功も発表したそうです。聴衆は電撃を受けたようなショックを感じたそうです。
これは、私がケンブリッジのMRC LMBのWhite先生のラボに入ったその日に、同時にポスドクにやってきたBob Goldsteinさんが書いているBrenner先生から聞いた話のまとめに載っている話です。自分の研究が抜きさられた(scoopedといいます)時のCrickの態度には学ぶべきところが多いです。Brenner先生の話を聞きに行ったときの別れの際にBrenner先生がGoldsteinさんに語った以下の言葉が印象的です。
As Brenner told me by way of parting advice: “Do the best experiments you can, and always tell the truth. That’s all.”

その他、Brenner先生に関する資料のリンクもGoldsteinさんの以下のページにありますのでご覧ください。

https://goldsteinlab.weebly.com/resources.html

 

私の口演動画の紹介を含むページを作っていただきました

以前、分子生物学会・生化学会の合同大会2017でランチョンセミナーをさせていただきました。その動画は以前紹介したようにYouTubeにでていますが、このたび、シュプリンガー・ネイチャーが電子ブックに関するインタビューや動画をまとめたページを作成してくださったと連絡を受けたので紹介しておきます。

「著者、利用者が語るその魅力 ― イーブック体験談」というページです。私の動画紹介だけのページはこちらです。他にもいろいろ面白い動画がありますのでご覧ください。

写真は近所の公園で一昨日撮影した桜です。桜がはらはらと散る光景も目につくようになり、そろそろ散った桜の花びらが道路をおおうようになってきました。

糖鎖生物学入門―2

糖鎖生物学入門―2

新元号が令和に決まりましたね。漢和辞典でという字を調べてみると、令日は「よき日」の意味ですし、令人は「よき人、美しい人」の意味、令嬢とか令徳など、の次に来る字が「よきものであり、うやまう」という用例が多いようです。平和や なごみがよきものになりますようにという意味になる、よい元号だと思いました。
今これを九大医学部図書館で書いていますが、九大医学部の桜も満開です。写真は今日の医学部キャンパスで撮影した満開の桜と、

3月26日に撮影した医学部キャンパスの桜です。

さて、糖鎖生物学入門の二回目です。九州大学で同名の講義をした時の資料をもとに全く新しく書いていきます。

糖鎖の構成要素(単糖):
糖鎖sugar chainというのは、単糖とよばれる糖がつながってできる鎖(枝分れするものも多い)です。糖鎖というのは例えばこんなものです。

この図には9種類の糖鎖があげてあります。色のついた丸や四角が単糖monosaccharideを表しており、単糖が様々につながって糖鎖ができるのです。枝分れしたりしていますので、糖鎖はとても多彩な分子構造をとることができそうですね。

単糖というのは、グルコース(ブドウ糖です)とかガラクトースとか、フコースとかN-アセチルグルコサミン(エヌアセチルグルコサミン)とかいう糖で、色々な種類があります。糖鎖について学び始めるときに最初に学ぶべき単糖の名前を下の図にのせておきます。こんな単糖があって、糖鎖をつくっているのだというのをみるのに最適な、入門者むけの単糖だけを選んであります(註1参照)。
この図にのっている単糖の名前や、記号を全部覚える必要はありません。その都度、参照することにしたらいいです。図にある単糖の中でN-アセチルグルコサミンGlcNAc(N-アセチルグルコサミンです。糖鎖生物の研究者は普通、グルックナックと読みます)とか、マンノースMan、グルコースGlc、ガラクトースGalなどの名前はサプリメントの広告とか、日常生活でよく耳にするのではないでしょうか?図には15個の単糖が並んでいますが、たいていの糖鎖はこの図の中の数種類だけを使ってつくられています。単糖の具体的な構造は以下で紹介します。

さて単糖の表記には図にみられるような、カラフルな記号表記が良く用いられています。昔はもっとごちゃごちゃした表記しかなかったのですが、パッと見て糖鎖の構造や類似性がみやすいカラフルな表記が普及しつつあります。Symbol Nomenclature for Glycans (SNFG)と呼ばれる記号表記で、以下のページにまとめられているので参照に便利です。
https://www.ncbi.nlm.nih.gov/glycans/snfg.html

リンクをクリックしてもらって図をご覧になればわかりますが、ものすごい数の単糖がならんでいます。これを全部覚える必要はありません。この図には様々な糖鎖を記述できるようにと、ヒトなどではあまり見かけない単糖も入っているからごちゃごちゃしているのです。そこで次の表には私の独断と偏見で選んだ、入門者に必要な単糖のみを残して後は消したものをあげてあります。(バクテリアにみられる糖とか、希少糖などめずらしい糖―いろんな生理機能も知られて重要性が叫ばれています―を除外しています。)上の図よりちょっと増えて20個ありますが必要に応じて参照していただければと思います。リンク付のpdfファイルもここにありますので参考にしてください。

Glc  Man  Gal 
グルコース マンノース ガラクトース
GlcNAc  ManNAc  GalNAc 
N-アセチルグルコサミン N-アセチルマンノサミン N-アセチルガラクトサミン
GlcN  ManN  GalN 
グルコサミン マンノサミン ガラクトサミン
GlcA  ManA  GalA  IdoA 
グルクロン酸 マンヌロン酸 ガラクツロン酸 イズロン酸
  Xyl  Fuc 
キシロース フコース
Kdn  Neu5Ac  Neu5Gc  Neu  Sia
ケーディーネヌ N-アセチルノイラミン酸 N-グリコリルノイラミン酸 ノイラミン酸 シアル酸(左の単糖から合成される単糖の分子ファミリー名)

青字の単糖にはリンクがはってありますので、クリックすると単糖の構造式や立体構造が表示されるページにとびます。
こうしたカラフルなSNFG表記の記号は、糖鎖科学の標準的教科書Essentials of Glycobiology 3rd editionでも使われています。https://www.ncbi.nlm.nih.gov/books/NBK310274/ 書籍版は有料ですが最新版が無料で上のリンクで公開されています。この本の図を全部パワーポイント形式にまとめたスライドも前の記事に書いたように無料で公開されていいます。糖鎖生物学の入門者には、この教科書の通読は必要ありません。せっかくネットにアップロードされていて、本の中身の検索もオンラインで自由にできます(このリンクのSearch this bookボタンを使います)ので、糖鎖学習のハンドブックとして是非活用してください。第二版の日本語訳も出ています。

単糖の構造を立体表示してみよう:PubChemによる表示
PubChemというのをご存知ですか?PubChemはNIHが公開しているオープンデータベースです(だれでも研究データをアップロードできて、だれもが利用できるというのがオープンの意味です)。PubChemを使うと様々な化学物質の情報、生理機能、特許、文献、構造式、立体構造そのほかが無料で調べられ利用できます。糖鎖を構成している単糖の構造を立体表示するにも最適のサイトですので、使ってみましょう。

SNFGのページを開いて以下のリンクから単糖のリストのパワーポイントファイルをダウンロードすると、

https://www.ncbi.nlm.nih.gov/glycans/docs/SymbolNomenclatureForGlycans_SNFG_Slides_UpdateJun2017.pptx

全部の単糖が入ったファイルがみられます。上で物凄い数の単糖のリストといったものです。各単糖にはPubChemへのリンクが張られており、スライド表示にして単糖の名前をクリックするとPubCemへのリンクがブラウザで開いて、化学式や立体構造がPubChemで表示されるのでとても便利です。いろいろPubChemで単糖を表示して遊んでみるのが入門にはよい経験になります。グルコースやガラクトースを立体表示してくるくる回して分子模型を手にとってみているように学べます。

注1:図は糖鎖構造を書くソフトGlycoEditorの入力画面をスクリーンショットしたものです。無料の糖鎖構造作図ソフトですので自分で使えそうな人は、ちょっと使ってみるのをお勧めします。詳しい使い方は次回以降に説明します。