DeepMindのAI学習用教材の紹介です。

AlphaFold2やAlphaGOで有名なDeepMindではいろいろなAI学習用教材を用意しているそうです。たとえばこちらには、
https://github.com/deepmind/educational
深層学習Deep LearningのためのPython、NumPy講座や、教師あり学習入門、教師なし学習入門、タンパク質の立体構造予測原理の入門講座などすべてGoogle Colabで体験しながら学べる教材各種が用意してあります。
Introduction to Python and NumPy for Deep Learning
Introduction to Supervised Learning 1 – Regression
Introduction to Unsupervised Learning
Protein Folding
また大学レベルの講義も公開されていて、
https://www.deepmind.com/learning-resourcesにいろいろ講義が集められています。
一例をあげれば、
https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021は強化学習入門講義ですが、スライドをダウンロードして講義を聴くことができます。スライドには役に立つ強化学習の教科書のダウンロードリンクも載っています。http://incompleteideas.net/book/RLbook2020trimmed.pdf

有機化学を理解するための動画チャンネル

今日は有機化学の理解に役立つYouTubeチャンネルを紹介します。もろぴー有機化学・研究ちゃんねるというチャンネルで学習院大学の諸藤 達也先生の動画チャンネルです。諸藤 先生はこの動画チャンネルでの「動画配信による大学有機化学教育の普及」をたたえて、日本化学連合主催の化学コミュニケーション賞 2021(個人)が授与されています。
こちらが再生リストです。
https://www.youtube.com/channel/UCVdqfcGIhXFEe4JDV97X1ig/playlists
こんな動画もあります。
https://youtu.be/aNn3rdJU6mE

初歩からの解説もあります。
https://youtu.be/IEnL_s5HH6k

植物の血液型についての論文をみつけました

私が糖鎖生物学の研究をはじめたのは、両生類であるアフリカツメガエルの卵母細胞や受精卵、初期卵割胚の細胞表面にB型血液型物質が存在しており、B型血液型物質が初期胚の細胞接着に働いていることを発見したのがきっかけです。それでABO 式血液型物質には特に興味をもっています。今日は植物にもABO式血液型物質が存在するのかというお話です。以前、糖鎖生物学の入門書籍で植物にもABO式血液型があるという話を読んだことがあります。たしかカエデは紅葉する前後で血液型物質の種類が変わると言う話だったと思います。多くの糖鎖生物学の入門書は、退職の時に学生さんにあげたり図書館に寄贈したりしたので、どの本で読んだのか思い出せません。血液型物質の研究で有名な山川民夫先生に、懇親会で植物がABO型の血液型物質をもっているって本当ですかと質問したことがあるのですが、そんな話はきいたことがないというお答えでした。Google検索では、「植物の血液型」で検索するといくつもweb pageがヒットして植物にも血液型があると書いてありますが、文献があげてないので真偽不明です。さっきおもいついて、国立国会図書館のデジタルコレクションの全文検索で、「植物の血液型」というキーワードで検索すると論文がヒットしました。もちろん植物が血液をもっているわけではないので、ABO(ABH)式血液型物質(の糖鎖構造)が存在するかを血液凝集活性阻止実験や吸収実験で確認している論文です。

「植物の血液型学的研究-4-抗H,抗A,抗B凝集素を阻止する高等植物の種子と果実について / 山本茂 ; 森岡ハツ 」科学警察研究所報告. 30(2)(118号) 86-93
https://dl.ndl.go.jp/info:ndljp/pid/1781133/8
「植物の血液型学的研究-5-ABO式血液型様活性を有する野菜,果物,香辛料の血清学的性状 / 山本//茂」 科学警察研究所報告. 34(4)(136号) 191-196
https://dl.ndl.go.jp/info:ndljp/pid/3390226/3

カエデなどにH型物質(これがO型物質のことです。)やA型物質、B型物質が存在すると書かれています。いろんな植物、種、果物、野菜などでの検索も行われています。
論文が見つかって安心しました。ABH式血液型物質については、これからいろいろ解説していく予定です。

ブリコラージュの話

今日はThe 24th Collegium for Comparative Glycomics(毎年開催されている比較グライコーム研究会の国際的な新しい名称です)にオンラインで参加しました。興味深い講演ばかりでしたが、長崎国際大学の藤井 佑樹先生のお話のなかにブリコラージュ bricolageという言葉が紹介されたので、皆さんにも紹介しておこうと思います。これはノーベル賞を授賞したFrançois Jacob( フランソワ ジャコブ)が進化の機構として紹介した概念です。藤井先生によると、Jacobの本  The possible and the actualにのっているとのことで、さっそくInternet archiveで探してみました。貸出可能な本でこちらから借りられます。https://archive.org/details/possibleactual00fran
本の中身を検索するとbricolageではヒットしませんがbricoJageでヒットして以下の記述がでてきました。(OCRしたテキストを検索しているのがわかりますね!)
Page 34
In contrast to the engineer, evolution does not produce innovations from scratch. It works on what already exists, either transforming a system to give it a new function or combining several systems to produce a more complex one. Natural selection has no analogy with any aspect of human behavior. If one wanted to use a comparison, however, one would have to say that this process resembles not engineering but tinkering, bricolage we say in French. While the engineer’s work relies on his having the raw materials and the tools that exactly fit his project, the tinkerer manages with odds and ends. Often without even knowing what he is going to produce, he uses whatever he finds around him, old cardboards, pieces of string, fragments of wood or metal, to make some kind of workable object. As pointed out by Claude Levi-Strauss, none of the materials at the tinkerer’s disposal has a precise and definite function. Each can be used in different ways. What the tinkerer ultimately produces is often related to no special project. It merely results from a series of contingent events, from all the opportunities he has had to enrich his stock with leftovers. In contrast with the engineer’s tools, those of the tinkerer cannot be defined by a project. What can be said about any of these objects is just that “it could be of some use.” For what? That depends on the circumstances.

生物の進化におけるイノベーションは、技術者が一から設計するようなイノベーションではなくて、生物が既にもっているもの=既存のシステムに新しい役割をわりふったり、あるいは既存のシステムをいくつか併せて新しい複雑なシステムに仕上げたりすることで実現するというのです。これはちょっとした手直しをして道具を改良したり修理したりする作業(tinkering)=鋳掛屋仕事といえるものであり、これをフランス語でbricolageというのだというようなことが書いてあります。

Jacobのインタビューでbricolageに触れているYouTube番組はこちらです。英語字幕付きです。https://youtu.be/P5TNjLzy6QI ホメオティック遺伝子とブリコラージュというフランス語のインタビューです。

このサイトWeb of Stories – Life Stories of Remarkable Peopleには有名な科学者のインタビューがいろいろあります。
https://www.youtube.com/c/webofstories/playlists
Brennerさんとか、物理学者のフリーマンダイソン、コンピューター科学者のKnuthとかいろんな方の話が聴けますので一度みてみるとよいでしょう。

突然変異メカニズムの量子生物学的解析の論文がでています!

昨日はお盆で京都の大文字の日でしたね。BSテレビで生中継を見ていました。雷雨で開始がおくれましたが見事な五山の送り火、久々の全山点灯ということでとても綺麗でした。京都に住んでいたころは、よくみんなで送り火を見に行ったのを思い出しました。さて今日は量子生物学の話題です。

DNAの突然変異の過程に量子現象が関与しているのではないかという議論はずいぶん昔からありました。最近、Nature系列の雑誌Communications Physicsに面白い論文がでていました。オープンアクセスですので誰でも自由に読むことができますのでご覧ください。
An open quantum systems approach to proton tunnelling in DNA というタイトルで
Jim Al-Khaliliのグループ(Department of Physics, University of Surrey, Guildford, GU2 7XH, UK)からの論文です。 この人は昨今の量子生物学ブームに火をつけた方です。このブログでも以前の記事でとりあげています。「量子力学で生命の謎を解く」(SB Creative社発行)という本はベストセラーになりました。

Slocombe, L., Sacchi, M. & Al-Khalili, J.
An open quantum systems approach to proton tunnelling in DNA. Commun Phys 5, 109 (2022). https://doi.org/10.1038/s42005-022-00881-8
論文はこちらからダウンロードできます。
https://www.nature.com/articles/s42005-022-00881-8#Abs1

DNAの塩基G(グアニン)とC(シトシン)は水素結合でDNAの二重らせんの中で結合しています。一方の鎖のGはもう一方の鎖のCと三本の水素結合で結合するというわけです。(塩基のアデニンAは塩基のチミンTと二本の水素結合で結合します)。この論文ではこれら核酸塩基の間に働いている水素結合を担う水素原子(プロトン)が量子トンネル効果で移動して核酸塩基が互変異性体(tautomer)へ変化する現象を量子力学でモデル化して研究しています。例えばG–C ↔ G*–C* → G*–T(註:アスタリスクはGやCの互変異性体を示します)となって、本来Cであるべきところがプロトン移動による互変異性体の形成の結果、Tに変わってしまうという突然変異がおきるわけです。論文ではこうした突然変異が起こる確率を計算しています。プロトンの量子トンネル効果によって互変異性体ができて平衡に達する時間や確率を量子力学と統計力学を用いて計算しています。絶対温度300ケルビン(だいたい摂氏27度の室温です)での計算結果は、互変異性体による突然変異のおきる確率が従来の古典モデルで予想した値の10000倍になることを示しているそうです。今まで量子現象は突然変異にはほとんど寄与指定いないと考えられていたのですが、どうやら突然変異には量子効果が極めえ重大な役割をはたしているようです。今回の論文のように、量子力学を常温での生命現象に応用する試みがこれからどんどん増えていくと思われます。面白い時代になってきました。

以前のブログの記事はこちらです。
https://glycostationx.org/2018/10/02/%e7%a7%8b%e3%81%ae%e3%81%8a%e3%81%99%e3%81%99%e3%82%81%e6%9c%ac%e3%81%9d%e3%81%ae%ef%bc%91%e2%80%95%e9%87%8f%e5%ad%90%e7%94%9f%e7%89%a9%e5%ad%a6%ef%bc%88%ef%bc%91%ef%bc%89/

有機化学でよくみかけるR/S表示を楽しく学べるゲームがあります

生化学で糖やアミノ酸などを扱う時、enantiomerというのがよくでてきます。
enantiomer : 鏡像異性体, 鏡像体, 対掌体, エナンチオマー という訳がLife Science Dictionaryのサイトにでています。こんな例があります。
(R)-1-bromo-1-chloroethane と
(S)-1-bromo-1-chloroethaneと書かれている化合物の違いはなんでしょうか。

これらの化合物は、正四面体の中心に位置する炭素原子Cに、臭素原子Br・塩素原子Cl・メチル基CH3・水素Hが結合している分子です。鏡像異性体が二つあってそれぞれR型、S型と呼ばれます。このRとSを使った立体構造の記述法では、(R) はラテン語のrectus;  right, correct or properという意味の単語、(S) はラテン語のsinister; left or improperという意味の単語に由来しています。どのようにRとSを決めるかについては、以下のサイトのゲームが面白いです。
https://rschemistry.com/
カリフォルニア大学ロサンゼルス分校UCLAのGarg Labの作ったフリーのゲームです。https://garg.chem.ucla.edu/のeducationの部分をクリックすると他のゲームもありますので遊んでみるといいでしょう。説明をじっくり読んでから(英語が苦手な人は日本語の適当な説明を読んでから(たとえばこちらhttps://www.t.soka.ac.jp/chem/yuki/text/OC1ch7.pdf)やってみると絶対配置を記述するRS表示が使いこなせるようになると思います。

新型コロナウイルスとワクチン―Sタンパク質はヘパリンと結合する

新型コロナウイルスSARS-COV-2のワクチンの接種がすすんでいます。3回目の接種も国民の6割を超えたとか。そこで今日は、糖鎖生物学からみたワクチンの話です。現在接種が行われているmRNA(メッセンジャー・アールエヌエーと読みます。エム・アールエヌエーというと専門家風に聞こえます)ワクチンは、分解しにくいように塩基を改変した合成mRNAが主成分です。このmRNAはウイルスの表面に生えているスパイクタンパク質(SpikeのSをとってSタンパク質とよばれます)を作るもので、このmRNAを入れた脂質ナノ粒子を筋肉注射します。注入されたmRNAが、体内で翻訳されてスパイクタンパク質(Sタンパク質)が合成され、これを異物として体が認識するので抗体ができ、その抗体は感染してきたウイルス表面のSタンパク質を攻撃するのでウイルスの感染が成立しなくなるというわけです。下はオープンアクセスの解説(総説)からとった解説図です。総説はこちらから読めます。mRNAワクチンについての概観を得るのに最適の解説だと思います。
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071766/
An external file that holds a picture, illustration, etc. Object name is ijbsv17p1446g002.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8071766_ijbsv17p1446g002.jpg
上が図へのリンクです。

さて、このワクチンに含まれているmRNAの配列は公表されていますが、ワクチンそのものからmRNAを回収して配列決定した方もいます。その配列はたしかにSタンパク質のmRNAのものであり、間違いなくSタンパク質を体内で作ると期待されます。
https://github.com/NAalytics/Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273/blob/main/Figure1Figure2_032321.fasta

このSタンパク質、実は糖鎖と結合するのですが、この事実はあまり知られていません。Sタンパク質はタンパク質なので、特定の配列のアミノ酸がつらなって配列している分子です。Sタンパク質の中にある、アルギニンなどプラスの電荷をおびているアミノ酸がつらなって並んでいる配列の部分が、細胞表面の糖鎖の一種であるグリコサミノグリカン(グリコサミノグリカンglycosaminoglycan: GAGと略されます)と強固に結合します。グリコサミノグリカンというのはマイナスに電荷を帯びている糖鎖で多くの場合、タンパク質と結合してプロテオグリカンとよばれる糖タンパク質として存在しています。Sタンパク質のアミノ酸配列中にはプラス電荷の多いアミノ酸からなる部分が最低3つあり、これがマイナスの電荷をおびているグリコサミノグリカン(ヘパリンやヘパラン硫酸、コンドロイチン硫酸、ヒアルロン酸などの糖鎖部分をいいます)と結合するのです。日本やスエーデン、米国など世界各国でSタンパク質がグリコサミノグリカン、特にヘパリンと強固に結合することが論文発表されています。一例としてEsko先生のグループの論文を紹介しておきますので興味のある方はご覧ください。https://pubmed.ncbi.nlm.nih.gov/32970989/
このリンクから論文がダウンロードできます。
https://www.cell.com/cell/fulltext/S0092-8674(20)31230-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867420312307%3Fshowall%3Dtrue

その他のレセプターについては以下をご覧ください。https://www.nature.com/articles/s41392-021-00653-w

このSタンパク質は、3つあつまって三量体となって働きます。Sタンパク質が結合するのはACE2というタンパク質(アンギオテンシン・コンバーティング・エンザイム2=つまり血圧調節などに働いているアンギオテンシンというタンパク質を活性型に切断する酵素)です。糖鎖生物学の研究によると、ACE2と結合するとき、Sタンパク質は先ほど述べたプラス電荷の多い部分を利用して、さきほど述べたグリコサミノグリカン(プロテオグリカンなど)とも結合して感染が成立するそうです。
すなわち新型コロナウイルスの結合にはACE2とグリコサミノグリカン両方が必要とされています。興味深いことに、このグリコサミノグリカンとの結合配列ですが、以前流行したSARSやMERSではアミノ酸配列が異なっており、今回のウイルスほど結合力が強くなかったようです。SARSやMERSウイルスがグリコサミノグリカンと結合するという報告もなかったのではないでしょうか。

以上まとめると、Sタンパク質は体内のグリコサミノグリカンとよばれる糖鎖と強力に結合します。論文によるともっとも強固に結合するのは硫酸化されて強いマイナス電荷をおびているヘパリンだそうです。新型コロナウイルスが感染する血管の上皮細胞(血管内皮細胞)はプロテオグリカンに覆われていますし、肺もプロテオグリカンが豊富な器官です。新型コロナウイルス感染症が肺と血管の病気と言われる理由がこのへんにあるわけです。

そこで思いつくのは感染を阻害するにはSタンパク質に結合するグリコサミノグリカンを血中にいれてやるという治療法です。血中にはいったグリコサミノグリカンはウイルスのSタンパク質にべたべたとくっつくので、ウイルスの感染を阻害できるはずです。実際、ヘパリンを注射すると感染が阻害されることがわかっています。

ヘパリンは血液凝固阻害剤(ヘパリンはアンチトロンビンやその他の成分と結合して血液凝固を阻害するので血栓ができそうなときに予防と血栓溶解のためによく用いられます)として医療で日常的に利用されているグリコサミノグリカンで、5つの糖が並んだ糖鎖からなるヘパリンが普通に治療には使われているようです。ヘパリンはマスト細胞(肥満細胞)という免疫系の細胞が細胞質内に大量にたくわえている生理活性分子で、マスト細胞は他にヒスタミンや血小板活性化因子なども含んでいて、アレルギー反応に関与する重要な細胞です。この肥満細胞は肺に多いですし、肺にはプロテオグリカンも豊富です。肥満細胞の分泌するヘパリンは血栓の生成を抑えるはたらきが強いグリコサミノグリカンです。抗凝固作用はヘパリンが最強で、ヘパラン硫酸プロテオグリカンと呼ばれる一群のプロテオグリカンの抗凝固作用をしのぐ強さです。

以上の知識をもってワクチンについて考えてみましょう。
ワクチン接種でSタンパク質が体内にできると、三量体になってそれぞれがヘパリンあるいは体内の別のプロテオグリカン(たとえばヘパラン硫酸とかコンドロイチン硫酸)と結合するでしょう。可能性として考えられるのは、
1)これによってヘパリンやプロテオグリカンの体内での減少が引き起こされるかもしれません。ヘパリンへのSタンパク質の結合によって、ヘパリンの制御ネットワークが影響されて血栓につながる可能性はないでしょうか。
2)あるいは、Sタンパク質とヘパリン(あるいはその他のプロテオグリカン)の複合体に対して自己抗体ができたりする可能性も思いつきます。

ウイルス感染にともなっておこる血栓がワクチンでもおこっているとしたら、ワクチンの合成するSタンパク質を原因として疑うのは自然です。そのへんのところは、ちゃんと調べられているのでしょうか。専門家の方々に教えてもらいたいところです。

新型コロナウイルスは血管の内皮細胞(血管をつくっている上皮細胞を内皮細胞とよびます)を攻撃することが知られています。そして内皮細胞はびっしりと糖衣(とうい=グライコケイリックス)でおおわれており、糖衣の成分としてヘパラン硫酸などおプロテオグリカンが存在するのでこれとACE2 の複合体にウイルスがくっつくわけです。
一つ面白い論文を紹介します。
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347485/
この論文によるとSARS-COV-2のSタンパク質は以前流行したSARSやMERSウイルスよりもはるかに強くヘパリンと結合するそうです。肺にはヘパラン硫酸やコンドロイチン硫酸が豊富に存在し、ウイルスがこれらと結合する可能性は高いそうです。さらに肺には多量のmast cellが存在しており、この細胞は上で述べたように大量のヘパリンをふくんでいます。ヘパリンはヘパラン硫酸やコンドロイチン硫酸よりも強くS タンパクに結合することもわかっています。要するに新型コロナウイルスのSタンパク質の単量体や三量体は、従来のコロナウイルスよりはるかに強くヘパリンやその他のグリコサミノグリカンに結合するのです。また興味深いことに肺ではSARS-COV-2のレセプターであるACE2タンパク質の発現は極めて少ないとされています。肺での感染には肺の細胞表面に存在しているグリコサミノグリカンが、ACE2よりもさらに大きく感染に関与しているのかもしれません。

Sタンパク質がグリコサミノグリカンに結合するための結合領域は、次の配列です。The SGP contains three putative GAG-binding motifs with the following sequences: 453–459 (YRLFRKS), 681–686 (PRRARS), and 810–816 (SKPSKRS), which we define as sites 1, 2, and 3, respectively.
これは以下の論文(下のリンクから無料ダウンロード可能です)からの引用です。
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347485/

はやぶさ2の持ち帰った小惑星サンプルから20種以上のアミノ酸が検出されたそうです!

暗いニュースばかりのこの頃でしたが、今日、はやぶさ2の持ち帰った小惑星リュウグウの砂から20種類以上のアミノ酸が検出されたと言う報道をNHKニュースでみました。
新聞はとっていないのでさっそくネットで朝日新聞を確認しました。さわりだけ読める有料記事…。でも無料公開されているさわりの部分によると、グリシンやイソロイシン、バリン、グルタミン酸などもみつかっているようですね。小惑星にアミノ酸がみつかったのははじめてだそうで、画期的な発見です。石質隕石で見つかっている糖もあるのではないかと思います。そして糖鎖もみつかるのではないでしょうか。欲を言えば、Fred Hoyleの唱えていたようなバクテリアなども見つかるといいのですが。近く論文発表されるとかで、とても楽しみです。
リンクははやぶさ2のサンプルの写真ののっているページです。上の写真もこのJAXAのサイトに載っています。
https://www.hayabusa2.jaxa.jp/topics/20201225_samples/index.html

Glycobioinformaticsの動画を紹介します―NIH videocastです

昨日は糖鎖生物学へのバイオインフォマティクスの応用Glycobioinformaticsについて書かれた、創価大学の細田 正恵 先生と木下 聖子 先生が書かれた日本語の総説を紹介しました。日本の研究については先生がたの総説を手掛かりに、GlyCosmos Portal https://glycosmos.org/ などからいろいろたどっていくことができますので、後日紹介します。

今日はこの季節、例年恒例行事となっている、NIH videocastのGlycobiology関係のシンポジュウムの紹介です。今年の4月26日から2日にわたって行われた講演会で、NCBI, EMBL-EBI, UniProt, PDB, CAZy, Gene Ontology などのデータベースを使っているが、糖鎖生物学が専門でない人向けに行われたGlycobioinformaticsについてのおすすめの講演会です。是非ご覧ください。どちらのビデオも+Moreと書かれている部分をクリックするとダウンロードリンクが出てきますのでダウンロード可能です。超高画質でダウンロードできますので、ダウンロードしてゆっくりご覧になるのをお勧めします。Caption textもダウンロードできますので、字幕付きでダウンロードした動画をみることもできます。
Glyco-Informatics at the Interface of Disease and Data – Day 1
https://videocast.nih.gov/watch=45185

詳しいプログラムこちらにあります。
https://mregs.nih.gov/nigms/a5lb-d131
Glyco-Informatics at the Interface of Disease and Data (Day 2)
https://videocast.nih.gov/watch=45187

「糖鎖関連インフォマティクスへの入り口」という総説がでています。おすすめです!

糖鎖生物学の有用なリンクを紹介します。「糖鎖関連インフォマティクスへの入り口」という題の総説が、JSBi Bioinformatics Reviewというオープンアクセスの総説誌にでていて誰でも読めます。糖鎖配列をデータベースで扱う時の表記法なども詳しく解説されていますので、糖鎖に関心のある方には必須の知識が学べる良い総説です。是非読んでみてください。https://www.jstage.jst.go.jp/article/jsbibr/2/1/2_jsbibr.2021.10/_html/-char/ja
この総説誌は 特定非営利活動法人 日本バイオインフォマティクス学会 https://www.jsbi.org/が発行しているもので、糖鎖に限らずバイオインフォマティクス一般の興味深い総説が掲載されているのでおすすめです。