糖鎖生物学入門―5 糖鎖を描いてみよう―糖鎖シアリル ルイスxを描いて単糖どうしの結合についての理解を深めよう。

今回は、次の図に示す有名な糖鎖 「シアリルルイスX」(sialyl Lewis x: Lexとも書かれます)を描いてみましょう。このシアリルルイスxという糖鎖は、リンパ球の炎症反応などに関わっていたり、癌組織で増えていたり癌の転移に関わっていたりと大変重要な糖鎖です。

まずシアリルルイスxという糖鎖の構造をネットで調べます。(ルイスxやルイス血液型については註1をご覧ください。)

sialyl Lewis(x)というのをPubChemでしらべてみると以下のように化合物名がでています。
https://pubchem.ncbi.nlm.nih.gov/compound/Sialyl-Lewis_X
ページの中を読んでいくと、
sialyl Lewis xとあって下に様々な表記で同じ化合物を表したものがならんでいます。
Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcbβ
α-Neu5Ac-(2->3)-β-D-Gal-(1->4)-[α-L-Fuc-(1->3)]-β-D-GlcNAc
alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc (Neup、Galp、Fucpについては注2参照。pはピラノースの意味です。)
alpha-Neu5Ac-(2-3)-beta-D-Gal-(1-4)-(alpha-L-Fuc-(1-3))-beta-D-GlcNAc

この表示の意味がわかるようになるのが今回の目標です。

今回は上のシアリルルイスxの構造表記をもとに、前に紹介したCarbodrawというソフトをつかって糖鎖を描いてみましょう。このソフトのヘルプに英語ですがシアリルルイスxの書き方がのっています。(最後のD-GlcNAcがαになっている図を描いた例です。)
大学院の講義でこのソフトで糖鎖を描く例としてとりあげていたので、この入門でもやってみようと思います。生物が使っている単糖はたいていはD型ですが、フコースとイズロン酸はL型であることに注意して描いてみましょう。まず以下の表記を使ってみましょう。
alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc

Carbodrawでこの構造を書く方法は以下のとおりです。

まずFucoseとGlcNAcをα(1,3)結合で結びましょう。
-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAcの部分を描く作業です。デフォルトで表示されるFucose(フコース)はD型になっています。これをL型にかえなくてはなりません。αD Fucoseの上で右クリックして、Propertiesを選択すると下図のような画面がでます。ConfigurationがDになっているのをLに変えて、OKを押すとできあがり。これでL-Fucoseになりました。

(今回はやりませんが、Anomerityの項目でAlphaとあるところをBetaにするとβ-Fucoseができます。SubstitutionsのUp, Downのメニューを選ぶと、硫酸化とかの修飾も入れることができます。)
次に、-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAcの表記の後半、
beta-D-GlcpNAcを、Fucoseの時と同様にalpha-D-GlcpNAcから作ります。メニューからGlcNAcを選ぶと、デフォルトではα-D-GlcNAcが表示されるので、名前の文字のあたりを右クリックして、Propertiesを選び、Anomerityの部分にAlphaとあるところをプルダウンからBetaにかえてOKを押すとα-D-GlcNAcがβ-D-GlcNAcにかわります。

最後に、作ったα-Lフコースと、α-D-GlcNAcをα(1,3)グリコシド結合で結びます。それにはメニューの矢印の隣、魔法の杖のようなマークをクリックします。カーソルが魔法の杖に変わったら、単糖の炭素の番号表示をオンにしておき(炭素の番号表示のオン、オフは➂と書いてあるボタンをクリックして行います)、Fucoseの1番の炭素をこの杖のカーソルでクリックし、ドラッグすると線がマウスカーソルを動かすにつれて伸びていきますので(下図)、GlcNAcの3番の炭素までドラッグしていきます。

フコースの1番炭素からGlcNAc(グルックナック)の3番炭素にちゃんと結合ができると、線が太くなるのでそこでドラッグを止めると結合が描画されます。

 

まず一つ結合が書けました。こうして実際にソフトを使って書いてみると[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc化合物の表示の(1,3)などという表現の意味が良くわかると思います。

次はalpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc

の前半、alpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-を描きましょう。

CarbodrawのメニューからNANA(Neu5Ac:N-Acetylneuraminic acid=N-アセチルノイラミン酸)を選んでそれをβ-D-Galに結合させます。
まずNANAの結合するGalactoseを描きましょう。Galactoseを選んで図に追加すると、α-D-Galactoseが描かれます。それをβ-D-Galactoseに変えて、(右クリック、PropertiesででるメニューのAnomerityのプルダウンからBetaを選んでOKを押すだけです)、できたものの一番目の炭素を、さきほど作ったβ-D-GlcNAcの四番炭素へ結合させます。

次に、シアル酸のNANAをメニューから選び、図に追加します。これをβ-D-Galacotoseの3番の炭素に結合させます。NANAで炭素の番号を図のように表示するとわかりますが、シアル酸以外の他の単糖(ピラノース型のもの)の酸素(図では酸素は赤丸で表示されています)のとなりの炭素は1番なのに、シアル酸ではピラノースの酸素の隣の炭素の番号は2番になっています。それで普通の単糖の場合1-3結合に相当する結合がシアル酸では2-3結合になるわけです。この炭素の番号づけのずれのために、シアル酸転移酵素(シアル酸をくっつける酵素)はα2-3、α2-6、α2-8というように2番炭素がグリコシド結合に関与する結合表示となります。NANAの2位の炭素からalpha-Neup5Ac-(2->3)-beta-D-Galp-(1->4)-の表記にしたがって、α2-3結合をGalactoseの3位の炭素にむけて作りましょう。これでシアリルルイスx糖鎖が完成です。

 

 

自分でいろんな結合をつくってみると、糖鎖の論文にでているα1,3とかいう文言が怖くなくなるでしょう。詳しいやり方は、CARBODRAW/HELP/CARBODRAW.HTMLにありますので、CarbodrawのヘルプメニューからHelp Topicsをクリックして、参照してください。

記号表示では以下のようになります。

シアル酸の場合、何も書いていときは上に書いたとおり、αのあとには2が略してあると思ってください。それ以外のαやβはα1、β1が略してあるということです。

註1:ルイスエックスという名前にある、ルイス(Lewis)というのは、ルイス血液型という名前に由来します。ルイス血液型をになうのはルイスaとルイスbという糖鎖です。ルイスというのは、この血液型を解明するのに貢献した抗ルイスa抗体を提供したドナーのルイスさんの名前にに由来するのだそうです。LeaやLebの糖鎖は、糖脂質に付加されており、血清に存在する糖脂質が赤血球表面に吸着して血液型物質になっている例です。ルイスa, ルイスという糖鎖の異性体がそれぞれルイスx、ルイスyという糖鎖です。ルイスxやそれにシアル酸が付加されたシアリルルイスxは赤血球表面には存在していないので血液型物質ではないのですが、リンパ球の表面に存在して炎症反応などに関わっていたり、癌組織で増えていたり癌の転移に関わっていたりと大変重要な糖鎖です。
註2:この表現でのNeupとかGalp、Fucpという表記のpはピラノースの意味です。ピラノースは、O(酸素)を含む6員環の化合物ピランpyranに由来する糖の命名法で、Oを含む6員環構造をとっている糖を指します。furanoseはOを含む5員環の構造をとっている糖を指し、これもOを含む5員環の化合物furanに由来する命名です。

糖鎖生物学入門―3

平成も最後の日になりました。皆さん、どのようにお過ごしでしょうか。散歩にでかけると、藤の花やキンラン(金蘭)が咲いており初夏に感じられます。さて、糖鎖生物学入門記事の3回目です。(追記:一回目からまとめて糖鎖生物学入門を読みたい方は、固定ページのタブをクリックしてご覧ください。)

前回は糖鎖を構成する単位である単糖monosaccharideについて、その表記方法を含めて紹介しました。今回は単糖の構造について学びましょう。

炭水化物とはどんなものだろうか?:
前に紹介した単糖の一つ、グルコースをCarbodraw(註1)というソフトで書いたのがこの図です。赤が酸素原子、水色が水素原子です。

ではこの、このグルコースの水素原子と、水酸基OHを表示してみましょう。

すると、上の左の図のようにグルコース分子では、H(水素)とOH(水酸基)が上に向いたり、下に向いたりと、いろいろならんでいるのがよくわかります。OHやHは炭素からでている(炭素と結合している)ので、炭素の番号も合わせて表示すると上の右の図のようになります。水素のHと水酸基のOHがそれぞれ番号がついたグルコースの炭素にくっついているのがよくわかります。水はH2Oですが、単糖の各炭素原子に水素HとOH基が結合しており、まるで、炭素原子に水がくくりつけられているようにも見えますね。これが炭水化物という名前の由来です。

グルコースなどの単糖も炭水化物に属する化合物です。炭水化物は、分子式がCn(H2O)mという化学式で書けるものの総称です(最新の定義はもっと詳しいのがありますが、入門者にはこの古典的定義で十分です)。英語ではcarbohydrateといいます。hydrateという接尾語の意味は辞書のOxford English DictionaryではA compound of water with another compound or an elementなどと書いてあって、元素や化合物に水が結合した化合物が炭化水素であるということになります。グルコースの場合は、C6(H2O)6ということになり、図をみてみると、確かに一個の炭素あたり、水が一個結合しており、5の番号のついている炭素(5位の炭素といいます)のところだけが、ちょっと他と違っているのがわかりますね。これもこれでなかなか意味がある構造となっていそうですね。1位の炭素と5位の炭素の間は酸素がつないでいますので、5位と6位の炭素のところだけちょっと違うのに気づくと思います。

単糖は図にみられるように環状構造しているものが安定形です。輪を6つの原子でつくっているもの(6員環)と5つの原子で作っているもの(5員環)があります。グルコースは6員環です。酸素の隣の炭素から順に炭素原子に番号が振られています。この番号は、単糖が結合して糖鎖になるとき、何番目の炭素で結合していくかを記述するのに重要ですので、番号がついているんだということだけ覚えておいてください。

アノマー:
あと、真ん中あたりにβDというのがありますね。これは単糖の立体構造の違いを示すもので、αDのグルコースというのもあります。二つを比べてみると次の図のようになります。

 

違いはどこかわかりますか。1位の炭素でOHとHの向きが逆向きになっていますね。これだけの違いです。水溶液中ではこの二種類のグルコースが平衡状態で一定の比率で存在することがわかっています(純粋なαD グルコースを水にいれると、一部はβD グルコースに変化する。逆も同じです)。αとβの違いはこんなものです。(1位の炭素C-1がアノマー炭素とよばれ、αとβのタイプの分子はアノマーの関係にあるといいます。)

あとはDですが、Lというのが対になっています。L-glucoseという分子もあるわけです。ただ自然界にみられる単糖はほとんどがD型で、L型はフコースとイズロン酸だけなのでフコースとイズロン酸を描くときだけ注意してあとはD型を書けばよいことになります。

エピマーについて:
グルコースの化学式、C6(H2O)6という化学式をもつ単糖は他にもあります。ガラクトースとかマンノースがそれです。構造がどう違うかは以下の図で確認してみてください。

GlucoseとGalactoseの違いは、C-4位の炭素-4のOHとHの付き方ですね。
GlucoseとMannoseの違いは、C-2位の炭素のOHとHの付き方であることがわかります。
たったこれだけの違いですが、生物はこれらの単糖を使い分けているわけで、立体構造の重要性がわかりますね。このように糖の一個の炭素原子の立体配置の異性化したものをエピマーといいます。マンノースとガラクトースは、それぞれグルコースのエピマーです。

註1:Carbodrawについての警告です。糖鎖を描いているソフトはフリーソフトのCarbodrawですが、このソフトをGoogle検索などで探してダウンロードするのは危険ですのでやめてください。このソフトの開発は止まっており、作っていた会社もなくなっています。Google検索で探すと、やばそうなページがいっぱいヒットします。crackだのなんだのというタイトルのページ(このソフトはフリーソフトで登録も不要なもので、crackなど必要なわけがないのですが)があったりして、うっかりクリックすると妙なソフトをダウンロードさせられたり、セキュリティ上の被害を被る可能性もありますので注意してください。(5月1日追記:こちらのページからダウンロードするのは安全そうです。)
https://www.cmbn.no/tonjum/biotools-free-software.html 

写真はキンラン(金蘭)と藤です。

新しい私達の論文が公開されました―先天性グリコシル化異常症DPAGT1-CDGを線虫を使って研究するという論文です

先月投稿していた論文がアクセプトされて原稿がオンラインに掲載されました。Kanakiさんの修士論文の内容を主とした論文で、私達のCREST研究の成果を含めた論文です。Dejima君Matsudaさん、Murata君、Nomuraさん他 沢山の方々との共同研究の成果です。Oxford University Press発行の雑誌Glycobiologyを購読している方は是非ご覧ください。アブストラクトへのリンクは以下の論文のタイトルをクリックしてください。

UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans

糖鎖遺伝子の異常というのはアメリカ合衆国の人口の20%程度でみられるとされており、なんか具合が悪いと病院を訪れる患者さんや、100件近くの医療機関を訪れても原因がわからなかった患者さんのゲノム配列やmRNA配列をシークエンサーで調べてみると、糖鎖遺伝子の異常が原因であるということがわかったという例が頻出しています。それでアメリカでは糖鎖生物学者は病院、j研究所でひっぱりだこになっているということです。
今回の研究は先天性グリコシル化異常症CDG(congenital disorders of glycosylation)の原因遺伝子の一つでCDG-IjあるいはDPAGT1-CDGと呼ばれる病気の原因遺伝子DPAGT1の線虫での研究成果です。線虫でわかった結果をヒトの病気の解明に役立てようとする研究手法の実施例でもありますので是非ご覧ください。
先天性グリコシル化異常症についてはGoogle検索で「先天性グリコシル化異常症」といれてすぐにヒットする和田芳直先生の論文「先天性グリコシル化異常症CDGの分子診断」 (Proteomics Letters, 2017, 2, 1-6)をご覧ください。

私達の今回発表した論文ではヒトのN型糖鎖合成の第一段階ではたらく酵素DPAGT1の線虫版遺伝子algn-7を線虫で初めて同定し、遺伝子産物の酵素活性を確認、その遺伝子algn-7を阻害すると幼虫致死、卵母細胞形成異常、卵母細胞から胚への遷移(oocyte-to-embryo transition)が異常となることなどを報告しています。このDPAGT1遺伝子のノックアウトはマウスでは胚発生の初期での致死を引き起こしますが、お母さんマウスの体内でおこる死亡で詳しいことはなかなかわかりません。そこで線虫の登場となるわけです。
線虫は体が透明なので、発生していく卵母細胞などの様子が生きたまま観察できます。そこでこの研究では、この遺伝子の生殖巣での役割(幹細胞ニッチの形成から卵母細胞形成、そして受精)と初期胚分裂と幼虫期での役割を詳しく調べてみました。この遺伝子産物DPAGT1は従来日本で発見されてこの酵素を阻害する定番の薬であるツニカマイシンのターゲットとされてきましたが、ツニカマイシンはN型糖鎖の合成以外にも様々な副作用があります。実際 線虫で調べてみると、線虫でツニカマイシンを与えたときと、DPAGT1遺伝子を阻害したときとでは少々違った結果がでるのがわかりました。ツニカマイシンを使うより遺伝子そのものを阻害するのが一番確実です。線虫ではこの遺伝子の阻害がRNAiで強力かつ安定的に実施できます。そこで今回の研究ではDPAGT1遺伝子の機能をRNAiや遺伝子破壊で阻害したらどうなるかを詳しく調べた研究にもなっています。

このalgn-7遺伝子を阻害するとたしかにN型糖鎖の合成が抑えられることも確認できたので、さらに一歩すすめて生殖巣で発現しているどの「N型糖鎖がついているタンパク質」の阻害がalgn-7遺伝子の阻害でおこるのと同じ異常をひきおこすかも調べてみました。生殖系列で発現している遺伝子のリストとはすでに公開されています(RNA-Seqでの結果がすでに公開されています)。また線虫でN型糖鎖が付加されていることが実験的に確認されている遺伝子のリストもすでに公開されています(これもデータベースGlycoProtDBが公開されています。線虫、ヒト、マウスのデータがあります)、この二つのデータの胸痛部分456個の遺伝子をデータベース検索で選び出し、その遺伝子機能をRNAiで阻害した結果を調べてみました。その結果、同定できた5つの遺伝子は、algn-7の遺伝子阻害と同様の異常を引き起こします。これらの5つの遺伝子には、従来のCDGの原因遺伝子のほか、ごく最近にCDG遺伝子と同定されたもの、およびおそらくCDGでの異常症状の原因となる遺伝子ネットワークに関与していると推定されるものが含まれていることがわかりました。

  今まではN型糖鎖を阻害すると糖鎖付加が不十分なタンパク質が蓄積して小胞体ストレスが引き起こされてその結果、様々な表現型がでると漫然と考えられていましたが、小胞体ストレスはたいした影響は与えておらず、実はpatched遺伝子ネットワークなどいくつかの重要な遺伝子の機能阻害がCDGでの異常を引き起こしているのではないかと考察しています。是非、ご一読ください。

写真は先日 福岡市動物園に行ったときに撮影したお猿の子供たちの写真です。左上でブランコに上り初め、右で上まで到達。左下で下へとジャンプして落下し、右下で回転楕円体のような黄色の部分にのって遊んでいる一連の動きの写真です。朝早くでしたが元気にあそびまわっていて、子ザルの元気さがとてもよかったです。

 

糖鎖科学の最新のビデオの紹介です―NIH VideoCast

NIHのビデオキャスト糖鎖科学デーの講演会のビデオがアップロードされています。NIHのvideocastingはNIHで公開されている講演会をビデオでみられるサイトです。ビデオのダウンロードやキャプションファイル(字幕ファイル)のダウンロードもできます。
またNIHのpodcastもあってこちらでは、videocastとaudiocast が見たり聞いたりできますので携帯とかでみるのに便利です。

2018 NIH FDA Glycoscience Research Dayというのが、本年7月13日に開催されており、そのビデオです。この糖鎖科学の講演会と研究発表会の催しは去年も開催されており、そのビデオの内容は私の去年の九大での糖鎖科学の講義にも活用させてもらいました。今年はどんな内容なのか楽しみです。皆さんも是非ご覧ください。

ビデオはダウンロードすることができますし、画質も選べます。ビデオの掲載されているページにある下のようなリンクをクリックするとダウンロードできますので、やってみてください。このビデオは5時間ちょっとの講演会の記録になっています。英語が聞き取りにくい方は、キャプションファイルもダウンロードできますので便利です。

To download this event, select one of the available bit rates:
[64k]  [150k]  [240k]  [440k]  [740k]  [1040k]  [1240k]  [1440k]  [1840k]

生命科学系の英語の講演会のサンプルとしても使えますので、自分で英語で講演するときの参考にもどうぞ。またスライドがビデオにうつっていますが、高解像度のビデオをダウンロードすれば、字も絵もきわめて高画質でみられますのでとても便利です。この記事は高画質版をダウンロードしながら書いています。 (今終わりました。1.5Gのサイズだと40分弱かかりました。)

毎日暑いです。写真は車で夕方涼みにいったダムからみた博多湾です。ひぐらしが鳴いてとてもきれいな公園でした。