糖鎖生物学入門 -An Introduction to Glycobiology

糖鎖生物学入門―1

今回から糖鎖生物学Glycobiologyについて、ゆっくり解説していきます。九州大学で同名の講義をした時の資料をもとに全く新しく書いていきます。

生物の細胞の表面を眺めてみると、細胞膜の最外層、細胞が外界と最初に相互作用する領域(私は細胞膜のフロンティア領域と呼んでいます)には糖鎖sugar chainがびっしり存在しているのがわかります。たとえばここ やここにある、電子顕微鏡写真をご覧ください。
これらのリンクの写真にみられるように生物の細胞の表面は糖鎖でびっしり覆われています。これを糖衣glycocalyx(グライコ・ケイリクスと発音します。覚えておくとよいのですが、英語では単語の中にあるa という文字は「ア」と発音しないでアルファベットの読みそのままの「エイ」と発音する場合が多いです)と呼びます。細胞は糖のころもを着ているのです。糖衣は細胞の一番外側にありますから、外から細胞に感染するウイルスやバクテリアが最初に接触するのが糖衣の糖鎖です。細胞の最外層の糖鎖の創り出すパターンは、細胞の種類や状態を反映しており、糖鎖パターンが、その細胞のみかけを特徴づけているといってよいでしょう。隣の細胞やリンパ球、そして病原体であるウイルスや細菌が、まず第一に接触するのが細胞表面にある糖鎖です。糖鎖のパターンを認識して細菌やウイルスが好みの細胞に結合したり、病原性大腸菌O157の毒素(志賀毒素、あるいはベロ毒素とよばれています。赤痢菌の毒素と同じものもあります)が腎臓の細胞に結合したりします。もちろん糖鎖は病原体を呼び込むためにあるのではないので、細胞自身も糖鎖の配列を進化させることで、こうした細菌や細菌毒素、ウイルスに感染しないように進化しているわけで、病原菌や毒素、ウイルスと細胞表面糖鎖の共進化はこれからの面白い問題といえるでしょう。これから生命の第三の鎖ともいわれる糖鎖について学んでいきましょう。

タンパク質の多くには糖鎖がついています(糖鎖が付加(ふか)されているといいます)。ウイルス本体の外側に位置するタンパク質も同じで、ほとんどが糖鎖が付加したタンパク質(糖タンパク質)です。一般にウイルス感染は、細胞表面にある糖鎖にウイルスが結合するか、あるいはウイルス表面の糖鎖を細胞がくっつける事で成立します。

さて、この論文には、
https://www.cell.com/cell/fulltext/S0092-8674(16)30401-9
エイズウイルスに対する抗体ができにくい理由であるグリカンシールドの立体構造が述べられています。糖鎖がエイズウイルスのタンパク質部分を被ってバリアーをはっているというイメージですね。このバリアーがあるため、エイズウイルスに対する有効な抗体ができにくいということです。こういった糖鎖によるバリアをグリカンシールドglycan shieldと呼びます。下の図は上のCellの論文(Stewart-Jones et al., 2016, Cell 165, 813–826)
のGraphical Abstractからとったグリカンシールドの様子です。青や紫、緑の部分が糖鎖のグリカンシールドです。

ではこの論文があつかっているグリカンシールドの様子をブラウザで立体構造表示で観察してみましょう。タンパク質の立体構造のデータベースPDBにこの論文のエイズウイルス3量体(注1)に抗体が結合した複合体の立体構造が登録されています。そのうちの一つ、5FYJという名前で登録されている立体構造を見てみましょう。(ほかに5FYK, 5FYLも登録されているので比較してみてください) 以下のリンクをクリックしてブラウザで以下のページを表示してみてください。(表示させている動画が一番下にありますのでみてください)

https://www.rcsb.org/structure/5FYJ
上のリンクをクリックすると、左上に図が表示されています。その直下に3D Viewというのがありますね。その直後にあるStructure という単語をクリックしてください。するとブラウザの画面が変わって、立体構造が画面に表示されます。マウスを左クリックして動かすと立体構造が動くので、複合体の構造をくるくるまわして観察することができます。マウスホイールを回すと構造が拡大、縮小表示されます。またマウスの右クリックでオブジェクトを移動できます。
右側のメニューには、Assembly, Model, Symmetryなどと項目が並んでいます。Styleのプルダウン(初めはCartoonになっています)からSpacefillを選ぶと、スペースフィルモデルでの表示に変わります。Backbone、Surfaceなどいろいろ変えて表示がどう変わるか試してみてください。Ligandのところは、はじめはBall & Stickモデル表示になっています。これは糖鎖の部分を表示していますので、プルダウンからSpacefillを選んでみてください。またマウスを表示したい部分のところにあわせてそっと動かすと、その部分のアミノ酸名や糖の名前が表示されます。MANはαマンノース、BMAはβマンノース、NAGはN-アセチルグルコサミンのことです。

マウスの詳しい使い方はMouse controls documentationという部分をクリックすると表示されます。
以下は、立体構造を表示している動画です。
びっしり糖鎖が三量体のウイルスタンパク質表面に生えているのが実感できます。ナンテンの実のように赤いのが糖鎖です。

今回は、糖鎖のイントロと、糖蛋白質の立体構造をみるやり方の一つを説明しました。PDBは糖タンパク質にかぎらず様々なタンパク質の立体構造が集めてあるデータベースです。いろんな分子を表示してみると面白いです。

註1:3量体というのは、一種類の分子が3つ結合して複合体となり一体として働くものをいいます。2量体なら、2つ結合して一体として働く複合体のことです。エイズウイルスのこのタンパク質は糖鎖付加もされており、実際のウイルス上での状態を忠実に反映する3量体をつくるのに大変苦労したそうです。やっと安定な三量体ができたことから、グリカンシールドと抗体の関係なども解析できるようになり、立体構造もわかってきたそうです。

糖鎖生物学入門―2

糖鎖の構成要素(単糖):
糖鎖sugar chainというのは、単糖とよばれる糖がつながってできる鎖(枝分れするものも多い)です。糖鎖というのは例えばこんなものです。

この図には9種類の糖鎖があげてあります。色のついた丸や四角が単糖monosaccharideを表しており、単糖が様々につながって糖鎖ができるのです。枝分れしたりしていますので、糖鎖はとても多彩な分子構造をとることができそうですね。

単糖というのは、グルコース(ブドウ糖です)とかガラクトースとか、フコースとかN-アセチルグルコサミン(エヌアセチルグルコサミン)とかいう糖で、色々な種類があります。糖鎖について学び始めるときに最初に学ぶべき単糖の名前を下の図にのせておきます。こんな単糖があって、糖鎖をつくっているのだというのをみるのに最適な、入門者むけの単糖だけを選んであります(註1参照)。
この図にのっている単糖の名前や、記号を全部覚える必要はありません。その都度、参照することにしたらいいです。図にある単糖の中でN-アセチルグルコサミンGlcNAc(N-アセチルグルコサミンです。糖鎖生物の研究者は普通、グルックナックと読みます)とか、マンノースMan、グルコースGlc、ガラクトースGalなどの名前はサプリメントの広告とか、日常生活でよく耳にするのではないでしょうか?図には15個の単糖が並んでいますが、たいていの糖鎖はこの図の中の数種類だけを使ってつくられています。単糖の具体的な構造は以下で紹介します。

さて単糖の表記には図にみられるような、カラフルな記号表記が良く用いられています。昔はもっとごちゃごちゃした表記しかなかったのですが、パッと見て糖鎖の構造や類似性がみやすいカラフルな表記が普及しつつあります。Symbol Nomenclature for Glycans (SNFG)と呼ばれる記号表記で、以下のページにまとめられているので参照に便利です。
https://www.ncbi.nlm.nih.gov/glycans/snfg.html

リンクをクリックしてもらって図をご覧になればわかりますが、ものすごい数の単糖がならんでいます。これを全部覚える必要はありません。この図には様々な糖鎖を記述できるようにと、ヒトなどではあまり見かけない単糖も入っているからごちゃごちゃしているのです。そこで次の表には私の独断と偏見で選んだ、入門者に必要な単糖のみを残して後は消したものをあげてあります。(バクテリアにみられる糖とか、希少糖などめずらしい糖―いろんな生理機能も知られて重要性が叫ばれています―を除外しています。)上の図よりちょっと増えて20個ありますが必要に応じて参照していただければと思います。リンク付のpdfファイルもここにありますので参考にしてください。

Glc  Man  Gal 
グルコース マンノース ガラクトース
GlcNAc  ManNAc  GalNAc 
N-アセチルグルコサミン N-アセチルマンノサミン N-アセチルガラクトサミン
GlcN  ManN  GalN 
グルコサミン マンノサミン ガラクトサミン
GlcA  ManA  GalA  IdoA 
グルクロン酸 マンヌロン酸 ガラクツロン酸 イズロン酸
  Xyl  Fuc 
キシロース フコース
Kdn  Neu5Ac  Neu5Gc  Neu  Sia
ケーディーネヌ N-アセチルノイラミン酸 N-グリコリルノイラミン酸 ノイラミン酸 シアル酸(左の単糖から合成される単糖の分子ファミリー名)

青字の単糖にはリンクがはってありますので、クリックすると単糖の構造式や立体構造が表示されるページにとびます。
こうしたカラフルなSNFG表記の記号は、糖鎖科学の標準的教科書Essentials of Glycobiology 3rd editionでも使われています。https://www.ncbi.nlm.nih.gov/books/NBK310274/ 書籍版は有料ですが最新版が無料で上のリンクで公開されています。この本の図を全部パワーポイント形式にまとめたスライドも前の記事に書いたように無料で公開されていいます。糖鎖生物学の入門者には、この教科書の通読は必要ありません。せっかくネットにアップロードされていて、本の中身の検索もオンラインで自由にできます(このリンクのSearch this bookボタンを使います)ので、糖鎖学習のハンドブックとして是非活用してください。第二版の日本語訳も出ています。

単糖の構造を立体表示してみよう:PubChemによる表示
PubChemというのをご存知ですか?PubChemはNIHが公開しているオープンデータベースです(だれでも研究データをアップロードできて、だれもが利用できるというのがオープンの意味です)。PubChemを使うと様々な化学物質の情報、生理機能、特許、文献、構造式、立体構造そのほかが無料で調べられ利用できます。糖鎖を構成している単糖の構造を立体表示するにも最適のサイトですので、使ってみましょう。

SNFGのページを開いて以下のリンクから単糖のリストのパワーポイントファイルをダウンロードすると、

https://www.ncbi.nlm.nih.gov/glycans/docs/SymbolNomenclatureForGlycans_SNFG_Slides_UpdateJun2017.pptx

全部の単糖が入ったファイルがみられます。上で物凄い数の単糖のリストといったものです。各単糖にはPubChemへのリンクが張られており、スライド表示にして単糖の名前をクリックするとPubCemへのリンクがブラウザで開いて、化学式や立体構造がPubChemで表示されるのでとても便利です。いろいろPubChemで単糖を表示して遊んでみるのが入門にはよい経験になります。グルコースやガラクトースを立体表示してくるくる回して分子模型を手にとってみているように学べます。

注1:図は糖鎖構造を書くソフトGlycoEditorの入力画面をスクリーンショットしたものです。無料の糖鎖構造作図ソフトですので自分で使えそうな人は、ちょっと使ってみるのをお勧めします。詳しい使い方は次回以降に説明します。

糖鎖生物学入門―3
糖鎖生物学入門記事の3回目です。

前回は糖鎖を構成する単位である単糖monosaccharideについて、その表記方法を含めて紹介しました。今回は単糖の構造について学びましょう。

炭水化物とはどんなものだろうか?:
前に紹介した単糖の一つ、グルコースをCarbodraw(註1)というソフトで書いたのがこの図です。赤が酸素原子、水色が水素原子です。

ではこの、このグルコースの水素原子と、水酸基OHを表示してみましょう。

すると、上の左の図のようにグルコース分子では、H(水素)とOH(水酸基)が上に向いたり、下に向いたりと、いろいろならんでいるのがよくわかります。OHやHは炭素からでている(炭素と結合している)ので、炭素の番号も合わせて表示すると上の右の図のようになります。水素のHと水酸基のOHがそれぞれ番号がついたグルコースの炭素にくっついているのがよくわかります。水はH2Oですが、単糖の各炭素原子に水素HとOH基が結合しており、まるで、炭素原子に水がくくりつけられているようにも見えますね。これが炭水化物という名前の由来です。

グルコースなどの単糖も炭水化物に属する化合物です。炭水化物は、分子式がCn(H2O)mという化学式で書けるものの総称です(最新の定義はもっと詳しいのがありますが、入門者にはこの古典的定義で十分です)。英語ではcarbohydrateといいます。hydrateという接尾語の意味は辞書のOxford English DictionaryではA compound of water with another compound or an elementなどと書いてあって、元素や化合物に水が結合した化合物が炭化水素であるということになります。グルコースの場合は、C6(H2O)6ということになり、図をみてみると、確かに一個の炭素あたり、水が一個結合しており、5の番号のついている炭素(5位の炭素といいます)のところだけが、ちょっと他と違っているのがわかりますね。これもこれでなかなか意味がある構造となっていそうですね。1位の炭素と5位の炭素の間は酸素がつないでいますので、5位と6位の炭素のところだけちょっと違うのに気づくと思います。

単糖は図にみられるように環状構造しているものが安定形です。輪を6つの原子でつくっているもの(6員環)と5つの原子で作っているもの(5員環)があります。グルコースは6員環です。酸素の隣の炭素から順に炭素原子に番号が振られています。この番号は、単糖が結合して糖鎖になるとき、何番目の炭素で結合していくかを記述するのに重要ですので、番号がついているんだということだけ覚えておいてください。

アノマー:
あと、真ん中あたりにβDというのがありますね。これは単糖の立体構造の違いを示すもので、αDのグルコースというのもあります。二つを比べてみると次の図のようになります。

 

違いはどこかわかりますか。1位の炭素でOHとHの向きが逆向きになっていますね。これだけの違いです。水溶液中ではこの二種類のグルコースが平衡状態で一定の比率で存在することがわかっています(純粋なαD グルコースを水にいれると、一部はβD グルコースに変化する。逆も同じです)。αとβの違いはこんなものです。(1位の炭素C-1がアノマー炭素とよばれ、αとβのタイプの分子はアノマーの関係にあるといいます。)

あとはDですが、Lというのが対になっています。L-glucoseという分子もあるわけです。ただ自然界にみられる単糖はほとんどがD型で、L型はフコースとイズロン酸だけなのでフコースとイズロン酸を描くときだけ注意してあとはD型を書けばよいことになります。

エピマーについて:
グルコースの化学式、C6(H2O)6という化学式をもつ単糖は他にもあります。ガラクトースとかマンノースがそれです。構造がどう違うかは以下の図で確認してみてください。

GlucoseとGalactoseの違いは、C-4位の炭素-4のOHとHの付き方ですね。
GlucoseとMannoseの違いは、C-2位の炭素のOHとHの付き方であることがわかります。
たったこれだけの違いですが、生物はこれらの単糖を使い分けているわけで、立体構造の重要性がわかりますね。このように糖の一個の炭素原子の立体配置の異性化したものをエピマーといいます。マンノースとガラクトースは、それぞれグルコースのエピマーです。

註1:Carbodrawについての警告です。糖鎖を描いているソフトはフリーソフトのCarbodrawですが、このソフトをGoogle検索などで探してダウンロードするのは危険ですのでやめてください。このソフトの開発は止まっており、作っていた会社もなくなっています。Google検索で探すと、やばそうなページがいっぱいヒットします。crackだのなんだのというタイトルのページ(このソフトはフリーソフトで登録も不要なもので、crackなど必要なわけがないのですが)があったりして、うっかりクリックすると妙なソフトをダウンロードさせられたり、セキュリティ上の被害を被る可能性もありますので注意してください。(5月1日追記:こちらのページからダウンロードするのは安全そうです。)
https://www.cmbn.no/tonjum/biotools-free-software.html 

糖鎖生物学入門―4 アルマ望遠鏡がとらえた、宇宙に存在する糖

前回は単糖の構造を簡単に紹介しました。炭水化物は一般にCm(H2O)nと表記され、炭素に水がついたような分子という意味で、carbo hydrate (炭・水化物)というのでした。ではm=2でn=2の化合物、C2(H2O)2というのはどんな分子でしょうか。
グリコールアルデヒドという名がついているこの分子は、PubChemでは下図のような構造であると表示されています。 立体構造はこんな感じです。

図の左の構造式をみると、右端にアルデヒド基-CH=Oがあります(註2)。HOCH2-CH=Oいう構造のこの分子は、diose とよばれ (di-は2という意味の接頭語、-oseは糖を示す接尾語ですので、2-carbon sugarとも言われます。二炭糖といいます。註1参照)、体内で重要な代謝産物として働いており、たとえばアセチルCoAに容易に変化することも知られています。
このdioseは実は宇宙に存在しています。その存在を明らかにしたのは、先日ブラックホールの形をとらえた電波望遠鏡システムALMAです。
The Atacama Large Millimeter/submillimeter Array (ALMA) は、南米チリのAtacama砂漠に展開している電波望遠鏡群=アタカマ大型ミリ波サブミリ波干渉計です。上にリンクを張った日本語での紹介ページのトップの「ALMA望遠鏡にまつわる10のこと」の第4番目に「地球外生命の可能性に迫る」という項目があり、そこにグリコールアルデヒドの分子の絵がのっています。説明文にはアミノ酸のことばかり書かれていますが、グリコールアルデヒドは様々な炭水化物のもとにもなる分子です。
発見された場所はIRAS 16293-2422という地球から400光年はなれた連星系のガスの中で、太陽系タイプの星が誕生している現場と考えられているところです。その暖かいガス(200-300K程度の温度だそうです)の中に初めてグリコールアルデヒドが存在することがALMA電波望遠鏡で検出されたのです(論文はここからダウンロードできました)。以下の動画も参考にしてください。

グリコールアルデヒドは上に述べたように最も簡単な糖 diose(二炭糖)であり、ホルムアルデヒドからはじまるホルモース反応(formose reaction)で、触媒の存在下で様々な単糖やリボースなども合成できる素材となる分子でもあります。ホルムアルデヒド(化学式はHCHOでありこれはC(H2O)とかけます)は宇宙空間に存在することがすでに分かっており、グリコールアルデヒドとホルムアルデヒドがホルモース反応をすると三炭糖(グリセルアルデヒドなど)ができあがり、それをもとに様々な糖が合成できるのです。つまり宇宙に、それも太陽系の形成現場にグリコールアルデヒドが検出できたということは、生物によらない触媒で、こうした糖が形成される可能性を補強する発見であり、生命の礎になる炭水化物分子の発見は、宇宙における生命の起源の研究に大きく貢献するというわけです。

最初の有機化合物の一つとして、簡単に糖ができる、というのはとても興味深い可能性です。生命は糖からできたのかもしれない、つまり、RNAワールド云々をするまえに宇宙に豊富な糖の存在が前提としてあって、糖を中心とするタイプの生命がまず最初にできた(RNAの中にも糖がはいっています)可能性すらでてくるわけです。今まで生命の起源の説明に糖を取り込む試みは少なかったのですが、糖鎖生物学者の多くは、RNAワールドより前の糖の形成にこそ、生命の起源を解くカギがあると確信していると思います。

ALMA望遠鏡の日本語サイトには動画ギャラリーもあり、研究者向けサイトととともに大変わかりやすく望遠鏡の全貌を紹介してくれています。本屋に山積みされていた本『スーパー望遠鏡「アルマ」の創造者たち』もおすすめです。ALMA望遠鏡の建設に日本の科学者たちが決定的な貢献をしているのがよくわかります。

註1:炭素が2つ入ってる糖が二炭糖、3つが三炭糖、4つが四炭糖、5つなら五炭糖、6つなら六炭糖です。英語では、di-が2の接頭辞、tri-が3、tetra-が4、penta-が5、hexa-が6の接頭辞ですから、それぞれdiose, triose, tetrose, pentose, hexoseというう名前となります。pentoseはペントースリン酸サイクルというのを生化学で習った人もいるかもしれません。ヘキソースもよく聞く言葉ではないでしょうか。

註2:単糖でアルデヒド基を含むものをaldose (アルドース)、ケト基をふくむものをketose (ケトース)と呼ぶことも覚えておくと良いと思います。glycolaldehydeはaldoseになります。註1とあわせると、aldotetroseとか、ketopentoseというのがどんな物質かがわかると思います。このようにketoseやpentoseに、炭素数を組み合わせた表現もよくみうけます。